Noname manuscript No.
(will be inserted by the editor)

Adaptive and Stable Virtual Machine Placement for
Power- and Performance-aware Clouds: A Hybrid
Approach with Evolutionary Game Theory and
Linear Programming

Yi Cheng Ren - Junichi Suzuki - Shingo
Omura - Ryuichi Hosoya

Received: date / Accepted: date

Abstract This paper formulates a power- and performance-aware multiob-
jective virtual machine (VM) placement problem and approaches the problem
with an evolutionary game theoretic algorithm that is augmented by linear pro-
gramming. The proposed algorithm, called Cielo, aids cloud operators to adapt
the resource allocation to VMs and their locations according to the operational
conditions in a cloud (e.g., workload and resource availability) with respect to
multiple conflicting objectives such as response time and power consumption.
In Cielo, evolutionary multiobjective games are performed on VM configura-
tion strategies (i.e., solution candidates) with an aid of linear programming.
Cielo theoretically guarantees that each application (i.e., a set of VMs) per-
forms an evolutionarily stable deployment strategy, which is an equilibrium
solution under given operational conditions. Simulation results verify this the-
oretical stability analysis; applications seek equilibria to perform adaptive and
evolutionarily stable deployment strategies. Linear programming allows Cielo
to gain up to 38% improvement in optimality and up to 5.5x speedup in con-
vergence speed with reasonably acceptable computational costs.

Yi Cheng Ren - Junichi Suzuki
Department of Computer Science
University of Massachusetts, Boston
Boston, MA 02125-3393, USA
E-mail: yiren001@cs.umb.edu

Junichi Suzuki
E-mail: jxs@cs.umb.edu

Shingo Omura - Ryuichi Hosoya
OGIS International, Inc.

San Mateo, CA 94402, USA

E-mail: omura@ogis-international.com

Ryuichi Hosoya
E-mail: hosoya@Qogis-international.com

2 Yi Cheng Ren et al.

Keywords Cloud computing - virtual machine placement - evolutionary
game theory - linear programming - multiobjective optimization

1 Introduction

It is a challenging issue for cloud operators to place applications so that the
applications can satisfy given constraints in performance (e.g. response time)
while maintaining their resource utilization (CPU and network bandwidth
utilization) and power consumptionption. The operators are required to dy-
namically place applications by adjusting their locations and resource allo-
cation according to various operational conditions such as workload and re-
source availability. In order to address this challenge, this paper investigates
an application placement scheduler, called Cielo, which exhibits the following
properties:

— Self-optimization: allows applications to autonomously seek their optimal
placement configurations (i.e., locations and resource allocation) accord-
ing to operational conditions (e.g., workload and resource availability), as
adaptation decisions, under given optimization objectives and constraints.

— Self-stabilization: allows applications to autonomously seek stable adapta-
tion decisions by minimizing oscillations (or non-deterministic inconsisten-
cies) in decision making.

This project approaches the self-optimization and self-stabilization prop-
erties with evolutionary computation (EC) and evolutionary game theory
(EGT), respectively. Cielo leverages EC, particularly an evolutionary multiob-
jective optimization algorithm (EMOA), because, in general, EMOAs are ro-
bust problem-independent search methods that seek optimal solutions (adap-
tation decisions) with reasonable computational costs by maintaining a small
ratio of search coverage to the entire search space [1,2]. Cielo employs EGT as a
means to mathematically formulate adaptive decision making and theoretically
guarantee that each decision making process converges to an evolutionarily (or
asymptotically) stable equilibrium where a specific (stable) adaptation deci-
sion is deterministically made under a particular set of operational conditions.

By integrating EC and EGT, Cielo provides an EGT-backed evolutionary
algorithm that allows applications to (1) seek the solutions to optimally adapt
their locations and resource allocation and (2) operate at equilibria by mak-
ing evolutionarily stable decisions for application placement. In Cielo, each
application maintains a set (or a population) of placement strategies, each of
which indicates the location of and resource allocation for that application.
Cielo repeatedly performs evolutionary multiobjective games on placement
strategies and evolves them over generations with respect to conflicting op-
timization objectives including response time, resource utilization and power
consumption. In each generation, Cielo runs the simplex linear programming
(LP) algorithm for a small portion of the entire search space and leverages the
LP-optimal local solution(s) to efficiently search a globally optimal solution.

Adaptive and Stable Virtual Machine Placement in Clouds 3

This paper describes Cielo’s algorithmic design and evaluates its adapt-
ability and stability with a cloud data center that supports dynamic volt-
age and frequency scaling (DVFS) for CPUs. Simulation results demonstrate
that Cielo allows applications to seek equilibria to perform evolutionarily sta-
ble placement strategies and adapt their locations and resource allocations
to given operational conditions. Applications successfully leverage DVFS to
balance their response time performance, resource utilization and power con-
sumption. Linear programming aids Cielo to gain up to 38% improvement in
optimality and up to 5.5x speedup in convergence speed with reasonably ac-
ceptable computational costs. Cielo’s performance is evaluated in comparison
to existing heuristic algorithms. Cielo outperforms a well-known multiobjec-
tive evolutionary optimization algorithm, NSGA-II [3] by 24% in optimality
while maintaining 97% higher stability (lower oscillations). Cielo also outper-
forms two other well-known heuristics, first-fit and best-fit algorithms (FFA
and BFA), which have been widely used for adaptive cloud application deploy-
ment [4-7].

2 Problem Statement

This section formulates an application placement problem to place N applica-
tions on M hosts available in a cloud data center. Each application is designed
with a set of server software, following a three-tier application architecture [8,
9] (Fig. 1). Using a certain hypervisor such as Xen [10], each server is assumed
to run on a virtual machine (VM) atop a host. A host can operate multiple
VMs. They share resources available on their local host. Each host is assumed
to be equipped with a multi-core CPU that supports DVFS in each core.

Each message is sequentially processed from a Web server to a database
server through an application server. A reply message is generated by the
database server and forwarded in the reverse order toward a user. (Fig. 1).
This paper assumes that different applications utilize different sets of servers.
(Servers are not shared by different applications.)

hitml hitml/xml

HTTR N SERVET
WEB aAPP DATABASE

Fig. 1 Three-Tiered Application Architecture

The goal of this problem is to find evolutionarily stable strategies that
deploy N applications (i.e., N x 3 VMs) on M hosts so that the applications
adapt their locations and resource allocation to given workload and resource
availability with respect to the four objectives described below. Every objective
is computed on an application by application basis and is to be minimized.

Yi Cheng Ren et al.

— CPU allocation (fc): A certain CPU time share (in percentage) is allo-
cated to each VM. (The CPU share of 100% means that a CPU core is
fully allocated to a VM.) It represents the upper limit for the VM’s CPU
utilization. This objective is computed as the sum of CPU shares allocated
to three VMs of an application.

3
fo= Z ct (1)
=1

¢; denotes the CPU time share allocated to the ¢-th tier server in an ap-
plication.

— Bandwidth allocation (fg): A certain amount of bandwidth (in bits/second)
is allocated to each VM. It represents the upper limit for the VM’s band-
width consumption. This objective is computed as the sum of bandwidth
allocated to three VMs of an application.

3
/B = Z by (2)
t=1
b; denotes the amount of bandwidth allocated to the ¢-th tier server in an
application.
— Response time (frr): This objective indicates the time required for a mes-
sage to travel from a web server to a database server:

frr =TP +T" +T° (3)

TP denotes the total time for an application to process an incoming message
from a user at three servers. T is the waiting time for a message to be
processed at servers. T denotes the total communication delay to transmit
a message between servers. TP, T" and T are estimated with the M /M /M
queuing model, in which message arrivals follow a Poisson process and a
server’s message processing time is exponentially distributed.

TP is computed as follows where T denotes the time required for the ¢-th
tier server to process a message.

3
TP =>Y"1} (4)
t=1

T" is computed as follows.

1< a? P
T = = A o S
3 2P (1= pe)?)

-1
Tr ay Ay ok pO 1
where a; = \}\—————, py = —, po = P P 2
! tct : qt/Qmaz Pt 0] po < =0 n! o'1 - Pt/O

Adaptive and Stable Virtual Machine Placement in Clouds 5

A denotes the message arrival rate for an application (i.e., the number of
messages the application receives from users in the unit time). Note that
A= % Zle At where)\; is the message arrival rate for the ¢-th tier server
in the application. Currently, A = A\; = Ay = A3. p; denotes the utilization
of a CPU core that the t-th tier server resides on. ¢qz is is the maximum
CPU frequency. g; is the frequency of a CPU core that the ¢-th tier server
resides on. O is the total number of cores that a CPU contains.

T¢ is computed as follows.

2 2. B\

c c S A41

TC=) T~) 5 (6)
t=1 t'=2

B is the size of a message (in bits). T, ; denotes the communication
delay to transmit a message from the ¢-th to (¢ 4+ 1)-th server. b; denotes
the bandwidth allocated to the ¢-th tier server (bits/second).

— Power Consumption (fpc): This objective indicates the total power con-
sumption (in Watts) by the CPU cores that operate three VMs in an
application.

3
fro =3 (Pl + (Pl = Pl i =) ™

t=1 qmax

P, and P%, . denote the power consumption of a CPU core that the
t-th tier server resides on when its CPU utilization is 0% and 100% at the
frequency of ¢;, respectively.

Cielo considers the following four constraints.

— CPU core capacity constraint (Cc): The upper limit of the total share
allocation on each CPU core. ¢;, < C¢ for all O cores on all M hosts

where ¢; , is the total share allocation on the o-th core of the i-th host.
The violation of this constraint is computed as:

M O

go =33 (I, (cio — Cc)) (8)

i=1 o=

IEO = 1if 0; > C¢. Otherwise, I, = 0.
— Bandwidth capacity constraint (Cg): The upper limit of bandwidth con-
sumption allocated to each host. b; < Cg for all M hosts where b; is the
total amount of bandwidth allocated to the i-th host. The violation of this

constraint is computed as:

M

g8 =y (IF - (b: = Cp)) (9)

i=1
IB =1if b; > Cp. Otherwise, IZ = 0.

6 Yi Cheng Ren et al.

— Response time constraint (Crr): The upper limit of response time for each
application. frpp < Crr for all applications where fg, is the response time
of the i-th application. The violation of this constraint is computed as:

N
grr = Y (I (firr — Crr)) (10)
i=1
IFT = 1if fir > Cgry. Otherwise, IFT = 0.

— Power consumption constraint (Cpc): The upper limit of power consump-
tion for each application. fb, < Cpc for all N applications where fb,
is the power consumption of the i-th application. The violation of power
consumption constraint is computed as:

N

gre =Y (I[- (fpc — Cro)) (11)

i=1

IPC =1if fL > Cpc. Otherwise, IF¢ = 0.

3 Background: Evolutionary Game Theory

In a conventional game in the game theory, the objective of a rational player
is to choose a strategy that maximizes its payoff. In contrast, evolutionary
games are played repeatedly by players randomly drawn from a population [11,
12]. This section overviews key elements in evolutionary games: evolutionarily
stable strategies (ESS) and replicator dynamics.

3.1 Evolutionarily Stable Strategies (ESS)

Suppose all players in the initial population are programmed to play a certain
(incumbent) strategy k. Then, let a small population share of players, x €
(0,1), mutate and play a different (mutant) strategy ¢. When a player is drawn
for a game, the probabilities that its opponent plays k and £ are 1 — z and
x, respectively. Thus, the expected payoffs for the player to play k and ¢ are
denoted as U(k,zf + (1 — x)k) and U(¢, ¢ + (1 — x)k), respectively.

Definition 1 A strategy k is said to be evolutionarily stable if, for every
strategy £ # k, a certain Z € (0,1) exists, such that the inequality

Uk, 2+ (1—2)k) >U¥, 2l + (1 —2)k) (12)
holds for all z € (0,).

If the payoff function is linear, Eq. 12 derives:

(1 — 2)U(k, k) + 2U (k, 0) > (1 — 2)U (£, k) + 2U (£, 0) (13)

Adaptive and Stable Virtual Machine Placement in Clouds 7

If = is close to zero, Eq. 13 derives either

Uk, k) > U, k) or Uk, k) =U(l,k) and U(k,0) > U(£,0) (14)

This indicates that a player associated with the strategy k£ gains a higher
payoff than the ones associated with the other strategies. Therefore, no players
can benefit by changing their strategies from k to the others. This means that
an ESS is a solution on a Nash equilibrium. An ESS is a strategy that cannot
be invaded by any other strategies that have lower population shares.

3.2 Replicator Dynamics

The replicator dynamics describes how population shares associated with dif-
ferent strategies evolve over time [13]. Let Ag(¢) > 0 be the number of players
who play the strategy k € K, where K is the set of available strategies. The to-
tal population of players is given by A(t) = > ‘k[gl)\k(t). Let 2 (t) = Ak () /A(t)
be the population share of players who play k at time ¢. The population state is
defined by X (t) = [z1(t), -, zxk(t), -, 2k (t)]. Given X, the expected payoff
of playing k is denoted by U(k, X). The population’s average payoff, which is
same as the payoff of a player drawn randomly from the population, is denoted
by U(X,X)=>" Lﬁ‘lxk -U(k, X). In the replicator dynamics, the dynamics of
the population share x;, is described as follows.

i = ap - [U(k, X) — U(X, X)] (15)

Ty is the time derivative of z;. This equation states that players increase
(or decrease) their population shares when their payoffs are higher (or lower)
than the population’s average payoff.

Theorem 1 If a strategy k is strictly dominated, then xi(t)i— oo — 0.

A strategy is said to be strictly dominant if its payoff is strictly higher than
any opponents. As its population share grows, it dominates the population over
time. Conversely, a strategy is said to be strictly dominated if its payoff is lower
than that of a strictly dominant strategy. Thus, strictly dominated strategies
disappear in the population over time.

There is a close connection between Nash equilibria and the steady states
in the replicator dynamics, in which the population shares do not change over
time. Since no players want to change their strategies on Nash equilibria, every
Nash equilibrium is a steady state in the replicator dynamics. As described in
Section 3.1, an ESS is a solution on a Nash equilibrium. Thus, an ESS is a
solution at a steady state in the replicator dynamics. In other words, an ESS
is the strictly dominant strategy in the population on a steady state.

Cielo maintains a population of deployment strategies for each applica-
tion. In each population, strategies are randomly drawn to play games repeat-
edly until the population state reaches a steady state. Then, Cielo identifies

8 Yi Cheng Ren et al.

a strictly dominant strategy in the population and deploys VMs based on the
strategy as an ESS.

4 Cielo: An Evolutionary Game Theoretic Scheduler for VMs

Cielo maintains N populations, {P1, Pa, ..., Px}, for N applications and per-
forms games among strategies in each population. A strategy s consists of five
parameters to indicate the locations of and the resource allocation for three
VMs in a particular application:

s(a) = J (hi,t7 Uity City it qi,t>7 I<i<N (16)

tel,2,3

a; denotes the i-th application. h;, is the ID of a host that a;’s t-th tier
VM is placed to. u;+ is the ID of a CPU core that a;’s t-th tier VM resides
on in the host h;+. ¢; + and b; + are the CPU and bandwidth allocation for a;’s
t-th tier VM. g; + denotes the frequency of a CPU core that a;’s ¢-th tier VM
resides on.

Host 1 Host 2
core 1 core 2 core 1f=1k core2f=26k| A=App
W =Web
D = DataBase
— — f = Frequency
TT D|p core 3
core 3 f=2k coredf=1k core3f=2k cored

ﬂn) bps
AT v (%) (bps)

[l Virtual Machines for Application a1: {(1,3,30,80,1k),(1,3,30,85,2k),(2,3,45,120,2k)}
Virtual Machines for Application a2: {(1,4,20,50,1k),(2,1,25,65,1k],(2,2,50,140,2 6k)}

Fig. 2 Example Deployment Strategies

Fig. 2 shows two example strategies for two applications (a1 and as) (N =
2). Four cores are available in each of two hosts (M = 3 and O = 2). a1’s
strategy, s(a1), places the first-tier VM on the third core in the first host
(h11 =1 and ui 1 = 3). The 30% time share of the CPU core and 80 Kbps
bandwidth are allocated to the VM (¢q,1 = 30 and b1 1 = 80). The VM requires
the frequency of 1 GHz for the CPU core (g1,1 = 1k). The second-tier VM of
aj is placed on the third core in the first host (h12 =1, u1,2 = 3). 30% of the
CPU core time and 85 Kbps bandwidth are allocated to the VM (c¢; 2 = 30
and by 2 = 85). The VM requires the frequency of 2 GHz for the CPU core
(¢1,2 = 2k). The third-tier VM of aq requires the frequency of 2 GHz (¢; 3 =

Adaptive and Stable Virtual Machine Placement in Clouds 9

2k) on the third core of the second host (k1,3 =2, u1 3 = 3). 45% of the CPU
core time and 120 Kbps bandwidth are allocated to the VM (¢1,3 = 45 and
b1 3 = 120). If multiple VMs are placed on a CPU core, the core operates at
the highest required frequency. For example, on the third core of the first host,
two VMs requires 1 GHz and 2 GHz. Thus, the core operates at 2 GHz.

Given s(a1), a1’s objective values for CPU and bandwidth allocation are
105% (30 + 30 + 45) and 285 kbps (80 + 85 + 120). Assuming the CPU core
capacity constraint Co = 100% (Eq. 8), it is satisfied on every core (go = 0).
For example, on the third core of the first host, the total share allocation ¢; 3
is 60% (30% + 30%).

Algorithm 1 Evolutionary Process in Cielo

1: g=0

2: Randomly generate the initial N populations for N applications: P = {P1, P2, ..., PN}
3: while g < Gyae do

4 for each population P; randomly selected from P do
5: Pl 0

6: if random() < P, then

7 d; + linearProgramming(P;)

8: else

9: for j =1 to |P;|/2 do

10: s1 < randomlySelect(P;)

11: sg < randomlySelect(P;)

12: {winner,loser} + performGame(s1, s2)
13: replica < replicate(winner)

14: for each parameter v in replica do

15: if random() < Py, then

16: replica < mutate(replica, v)

17: end if

18: end for

19: winner’ < performGame(loser, replica)
20: Pi\ {s1,s2}

21: P! U {winner, winner'}

22: end for

23: Pi 'P,:

24: d; + argmazsep,Ts

25: while d; is infeasible do

26: Pi\ {d:}

27: d; < argmazscp,Ts

28: end while

29: Deploy VMs for the current application based on d;.
30: end if
31: end for

32: g=g+1
33: end while

Algorithm 1 shows how Cielo seeks an evolutionarily stable strategy for
each application through evolutionary games. In the 0-th generation, strategies
are randomly generated for each of N populations {Py, Pa, ..., Px} (Line 2).
Those strategies may or may not be feasible. Note that a strategy is said to be

10 Yi Cheng Ren et al.

feasible if it violates none of four constraints described in Section 2. A strategy
is said to be infeasible if it violates at least one constraint.

In each generation (g), under the probability of 1 — P, a series of games
are carried out on every population (Lines 8 to 30). A single game randomly
chooses a pair of strategies (s; and so) and distinguishes them to the win-
ner and the loser with respect to performance objectives described in Sec-
tion 2 (Lines 10 to 12). The loser disappears in the population. The winner
is replicated to increase its population share and mutated with polynomial
mutation [14] (Lines 13 to 18). Mutation randomly chooses a parameter (or
parameters) in a given strategy with a certain mutation rate P, and alters
its/their value(s) at random (Lines 14 to 18). Then, another game is performed
between the loser and the mutated winner (Line 19). This is intended to select
the top two of three strategies (winner, loser and mutated winner).

Once all strategies play games in the population, BitC identifies a feasi-
ble strategy whose population share (zs) is the highest and determines it as
a dominant strategy (d;) (Lines 24 to 28). Cielo deploys three VMs for an
application in question based on the dominant strategy (Line 29).

A game is carried out based on the superior-inferior relationship between
given two strategies and their feasibility (performGame () in Algorithm 1). If a
feasible strategy and an infeasible strategy participate in a game, the feasible
one always wins the game. If both strategies are feasible, they are compared
based on the notion of Pareto dominance [15], in which a strategy s; is said
to dominate another strategy ss if both of the following conditions hold:

— s1’s objective values are superior than, or equal to, s2’s in all objectives.
— s1’s objective values are superior than ss’s in at least one objectives.

The dominating strategy wins a game over the dominated one. If two strate-
gies are non-dominated with each other, the winner is randomly selected.

If both strategies are infeasible in a game, they are compared based on
their constraint violation. An infeasible strategy s; wins a game over another
infeasible strategy ss if both of the following conditions hold:

— s1’s constraint violation is lower than, or equal to, s»’s in all constraints.
— s1’s constraint violation is lower than ss’s in at least one constraints.

In each generation (g), Cielo performs the simplex linear programming
(LP) algorithm on each population (P;) with the probability of P, (Lines 6
to 7). LP guarantees to find the optimal solution for a single objective function
as far as it exists; however, it cannot consider multiple objectives separately.
Therefore, Cielo executes LP in one of the following two methods subject to
the four constraints described in Section 2 (C¢,Cp,Crr and Cpc).

— Single objective method: Cielo executes LP with one of four objectives
described in Section 2 (fc, fB, frr or fpc). Another limitation of LP
is that objective and constraint functions must be all linear. Since the
objective function for response time is non-linear (Eq. 3), Cielo replaces it
with a linearly approximated function:

Adaptive and Stable Virtual Machine Placement in Clouds 11

3

1
é;ZZ{Ttp"’5(Ttp)‘t_ctq%)+(B/\t_bt)} (17)
P 'max

— Weighted sum method: Cielo executes LP with the following objective func-
tion, which aggregates four objective functions (fc, fg, f5¥ or fpc) as a
weighted sum. w denotes a weight value for a particular objective function.
Each objective value (f;) is normalized.

4
fws = wif; (18)
i=1

Once LP finds the optimal solution for a population, Cielo treats it as the
dominant strategy for that population (Line 7). Note that the linear program-
ming rate (F)) is intended to be low. Cielo executes LP for a small portion of
the entire problem (i.e., for a small number of populations: P, x N populations)
and leverages the LP-optimal solution(s) to boost convergence speed as well

as the quality of the set of dominant strategies dy, da, ... , dy).

5 Stability Analysis

This section analyzes Cielo’s stability (i.e., reachability to at least one of Nash
equilibria) by proving the state of each population converges to an evolution-
arily stable equillibrium. The proof consists of three steps: (1) designing a set
of differential equations that describe the dynamics of the population state (or
strategy distribution), (2) proving an strategy selection process has equilibria
and (3) proving the the equilibria are asymptotically stable (or evolutionarily
stable) . The proof uses the following terms and variables.

— S denotes the set of available strategies. S* denotes a set of strategies that
appear in the population.

— X(t) = {x1(t),z2(t), -+, 7)5+|(t)} denotes a population state at time ¢
where x5(t) is the population share of a strategy s € S. > seg+(xs) = 1.

— Fj is the fitness of a strategy s. It is a relative value determined in a game
against an opponent based on the dominance relationship between them.
The winner of a game earns a higher fitness than the loser.

— pi =z - ¢(Fs — Fy) denotes the probability that a strategy s is replicated
by winning a game against another strategy k. ¢(F — F}) is the probability
that the fitness of s is higher than that of k.

The dynamics of the population share of s is described as follows.

T = Z {zpf — 21"} = 24 Z TRl d(Fs — Fy) — o(F), — Fs)} (19)

keS* k#s keS* k#s

Note that if s is strictly dominated, x4(t);—oo — 0.

12 Yi Cheng Ren et al.

Theorem 2 The state of a population converges to an equilibrium.

Proof Tt is true that different strategies have different fitness values. In other
words, only one strategy has the highest fitness among others. Given Theo-
rem 1, assuming that Fy; > Fy > --- > F|g|, the population state converges
to an equilibrium: X ()00 = {21(t), 22(t), - - -, 75+ (1) }t00 = {1,0,---,0}.

Theorem 3 The equilibrium found in Theorem 2 is asymptotically stable.

Proof At the equilibrium X = {1,0,---,0}, a set of differential equations can

be downsized by substituting z1 =1 -3 — -+ — 7|9+
[s”]
Zs = zs[es1(1 — 25) + Z zi Csily S, k=2,...,]57 (20)
i=2,i#s

where cg, = ¢(Fs — Fy,) — ¢(Fy, — Fy)) and Z(t) = {22(¢), 23(t),
-+, 25+|(t)} denotes the corresponding downsized population state. Given
Theorem 1, Zy_yoo = Zeg = {0,0,---,0} of (|S*| — 1)-dimension.

If all Eigenvalues of Jaccobian matrix of Z(t) has negative real parts, Z.,
is asymptotically stable. The Jaccobian matrix J’s elements are

82'5 azs [Csl(l - Zs) + leig‘ i#s Zg - Csi]
Jsk = = - (21)
0z \2=2., Oz |Z=Z.,
for s,k =2,...,|S"
Therefore, J is given as follows, where c21,¢31," -+, /5|1 are J’s Eigenvalues.
e 0 -+ 0
0 c33--- 0
J=1. .. . (22)
O O ce C\S*\l

cs1 = —¢(F1 —Fy) < 0 for all s; therefore, Z., = {0,0,---,0} is asymptotically
stable.

6 Simulation Evaluation

This section evaluates Cielo, particularly in its optimality and stability, through
simulations.

Adaptive and Stable Virtual Machine Placement in Clouds 13

6.1 Simulation Configurations

This paper simulates a cloud data center that consists of 100 hosts in a 10 x 10
grid topology (M = 100). The grid topology is chosen based on recent findings
on efficient topology configurations in clouds [16,17]. This paper also assumes
five different types of applications. Table 6.1 shows the message arrival rate
(i.e., the number of incoming messages per second) and message processing
time (in second) for each type of applications. This configuration follows Zipf’s
law [18,19]. This paper simulates 40 application instances for each application
type (200 application instances in total; N = 200).

[Application type “ 1 [2 [3 [4 [5]

[Message arrival rate (A\in Eq. 6) [110 [70 [40 | 20 | 10 |
Web server (T7 in Eq. 4) 0.02 | 0.02 | 0.04 | 0.04 | 0.08
App server (Tf in Eq. 4) 0.03 | 0.08 | 0.04 | 0.13 | 0.11
DB server (T} in Eq. 4) 0.05 | 0.05 | 0.12 | 0.08 | 0.11

Table 1 Message Arrival Rate and Message Processing Time

Each host is simulated to operate an Intel Core2 Quad Q6700 CPU, which
is a quad-core CPU that has five frequency and voltage operating points (P-
states). Table 2 shows the power consumption at each P-state under the 0%
and 100% CPU utilization [20]. This setting is used in Eq. 7 to compute power
consumption objective values.

[P-state [[Frequency (¢) [PT,_ Pl s
pl 1.600 GHz 82.710 W 88.77T W
p2 1.867 GHz 82.85 W 92.00 W
p3 2.113 GHz 82.91 W 95.50 W
p4 2.400 GHz 83.10 W 99.45 W
pd 2.670 GHz 83.256 W 103.00 W

Table 2 P-states in Intel Core2 Quad Q6700

Table 3 shows the parameter settings for Cielo. Mutation rate is set to 1/v
where v is the number of parameters in a strategy. (v = 15 as shown in Eq. 16).
Every simulation result is the average with 20 independent simulation runs.

Comparative study is carried out for the following variants of Cielo.

— Cielo-BASE: Cielo with linear programming (LP) disabled

— Cielo-LP¢: Cielo with LP that uses the CPU consumption objective

— Cielo-LPg: Cielo with LP that uses the bandwidth consumption objective

— Cielo-LPpg: Cielo with LP that uses the power consumption objective

— Cielo-LPgr: Cielo with LP that uses the response time objective

— Cielo-LPws: Cielo with LP that uses a weighted sum of objective values
as an objective (Eq. 18).

14 Yi Cheng Ren et al.

[Parameter H Value]
Number of hosts (M) 100
Number of CPU cores per host (O in Eq. 6) 4
Number of applications (V) 200
Number of generations (Gmaz in Algo. 1) 500
Population size (|P;| in Algo. 1) 100
Linear programming rate (P, in Algo. 1) 0.005, 0.05, 0.1, 0.5
Mutation rate (P, in Algo. 1) 1/v

‘ : To=600, [5=1000,

Reference point for HV computation Fp=2000, frr=1000

Table 3 Parameter Settings for Cielo

Cielo’s variants are compared with and without constraints (Cp; and C
in Table 4). Constraints are enabled unless otherwise noted.

[Constraint Combinations [[Cc (%) [Cp (Kbps) [Cpc (W) [Crr (ms) |
Coo oo 00 00 0o
Cur 100 1,000 400 40

Table 4 Constraint Combinations

Cielo is evaluated in comparison with the simplex LP algorithm as well
as NSGA-II, which is a well-known multiobjective evolutionary algorithm [3].
Simplex is implemented with GNU Linear Programming Kit (GLPK)! and
Xypron?. Cielo and NSGA-II use the same parameter settings shown in Ta-
ble 3. All other NSGA-IT settings are borrowed from [3]. Both Cielo and
NSGA-II are implemented with jMetal [21]. Moreover, Cielo is compared to
well-known heuristics, first-fit and best-fit algorithms (FFA and BFA), which
have been widely used for adaptive cloud application deployment [4-7]. All
simulations were carried out with a Java VM 1.7 on a Windows 8.1 PC with
a 3.6 GHz AMD A6-5400K APU and 6 GB memory space.

6.2 Simulation Results

Table 5 examines how a mutation-related parameter, called distribution index
(Mm in [14]), impacts the performance of Cielo. Cielo-BASE is used in this
evaluation. This parameter controls how likely a mutated strategy is similar
to its original. (A higher distribution index makes a mutant more similar to
its original.) In Table 5, the performance of Cielo is evaluated with the hy-
pervolume measure that a set of dominant strategies yield in the last (500th)
generation. The hypervolume metric indicates the union of the volumes that a
given set of solutions dominates in the objective space [22]. A higher hypervol-
ume means that a set of solutions is more optimal. As shown in Table 5, Cielo

1 http://www.gnu.org/software/glpk/
2 http://glpk-java.sourceforge.net/

Adaptive and Stable Virtual Machine Placement in Clouds 15

yields the best performance with the distribution index value of 40. Thus, this
parameter setting is used in all successive simulations.

[Distribution Index [HV “ Distribution Index [HV]

30 0.823 35 0.828
40 0.830 45 0.827
50 0.825

Table 5 Impacts of Distribution Index Values on Hypervolume (HV) Performance

Table 6 illustrates how the computational costs of Cielo changes according
to the linear programming (LP) rate (P, in Algorithm 1 and Table 3). When
the LP rate is 0 %, Cielo works as Cielo-BASE. Its execution time is approx-
imately 6.5 minutes to run 500 generations. This is an acceptable cost for
configuring 3,000 parameters for 200 applications (15 parameters/application
x 200 applications).

Table 6 also shows the computational costs of Cielo-LPywg under different
LP rates from 0.5% to 50%. Probabilistically, LP is applied on one of 200 appli-
cations in each generation under the LP rate of 0.5%. If Cielo-LPwsgs considers
all four objectives in its weighted-sum function (Eq. 18), its execution time ex-
ceeds one hour even if the LP rate is 0.5%. The computation of response time
is a major contribution to this cost. If Cielo-LPyyg considers three objectives
besides the response time objective, its computational costs are reasonably
acceptable under the LP rates of 10% or lower. As LP rate increases from 0%
to 10%, execution time approximately doubles; however, it is still less than
14 minutes. In all successive simulations, Cielo-LPwg does not consider the
response time objective when it runs LP.

[Algorithms “ LP rate (%) [Execution time (s) [Speedup]
[Cielo-BASE | 0% [393 [1.0]
0.5% >3600 <0.10
. 5% >3600 <0.10
LP
Cielo-LPws w/ fxr 10% >3600 <0.10
50% >3600 <0.10
0.5% 435 0.90
. 5% 556 0.70
Cielo-LPws w/o flgqlf 10(%) 332 07
50% >3600 <0.10

Table 6 Impacts of LP Rates on the Execution Time Performance

Figs. 3 to 6 show a series of boxplots for the objective values that Cielo-
BASE and Cielo-LPwsg yield in 20 simulation runs. Each boxplot illustrates
the maximum and minimum objective values as well as the first, second and
third quartiles of objective values. Cielo-LPwsg outperforms Cielo-BASE in
all objectives except the response time objective. Note that Cielo-LPwg does

16 Yi Cheng Ren et al.
[H LPc [LPpw [LPpc [LPws [BASE]
fo (%) 15.04 (38.6%) 23.03 18.13 16.53 (32.5%) 24.48
fB (Kbps) 155.87 150.12 (3.6%) 151.43 150.44 (3.4%) | 155.76
frc (W) 296.98 294.78 274.23 (6.9%) | 283.25 (3.8%) | 294.54
frr (ms) 48.76 47.54 46.30 41.89 39.39

[Distance || 0.510 (12.8%) [0.574 (1.9%) [0.515 (12.0%) [0.508 (13.2%) | 0.585]
Table 7 Performance Improvement of Cielo-LP against Cielo-BASE

not consider the response time objective when it runs LP. Cielo-LPwsg yields
better/lower objective values as its LP rate increases from 0.5% to 10%. Since
the computational cost is reasonably acceptable under the LP rate of 10%
(Table 6), LP rate is set to 10% in all successive simulations.

Table 7 shows the average objective value that each of Cielo’s variants
yields in the last generation. A number in parentheses indicates a performance
gain against Clelo-BASE. Cielo always gains performance improvement on an
objective(s) that LP is applied to. Cielo-LP¢ gains the highest performance
improvement (38.6%). The performance improvement of Cielo-LPywsg is 13.3%
on average. Table 7 also depicts the distance from Cielo’s solution to the
utopian point, which is (0, 0, 0, 0), in the objective space. Manhattan distance
is used as a distance metric here. Cielo-LPwg’s solution is 13.2% closer to
the utopian point, which means 13.2% better optimized than Cielo-BASE’s.
Tables 6 and 7 demonstrate that LP successfully aids Cielo to boost the opti-
mality of its solution with reasonable computational costs.

Table 8 compares the objective values of Cielo-LPwg with the optimal re-
sults that LP finds with and without constraints. Here, LP is used to solve
the entire problem. Since LP can consider only one objective in a single sim-
ulation run, Table 8 shows the optimal objective values in four objectives by
running LP four times (“LP only” in Table 8). LP is also configured to use
a weighted-sum function that aggregates four objective values. In this con-
figuration, LP runs once to obtain four objective values (“LP only (WS)” in
Table 8). Those values are not guaranteed to be optimal. With constraints
disabled (Cw), Cielo-LPwgs and LP with a weighted-sum function produce
higher /worse objective values than LP’s optimal values because the two al-
gorithms consider multiple objectives simultaneously. Note that Cielo-LPg’s
performance is very close to LP in CPU and bandwidth allocation while it
is inferior to LP in power consumption. Cielo-LPwg outperforms LP with a
weighted-sum function in three of four objectives.

With constraints enabled (Cjr), LP obtains the optimal objective values in
CPU allocation and power consumption. However, it fails to obtain the optimal
values in two other objectives within the timeout period of one hour. LP with
a weighted-sum function fails to complete its execution within the timeout
period. Cielo-LPywg’s performance is very close to LP in CPU allocation while
it is inferior to LP in power consumption.

Table 8 also shows the execution time for the three algorithms. LP’s execu-
tion time indicates the total execution time to run four simulation runs. With

Adaptive and Stable Virtual Machine Placement in Clouds 17

constraints disabled, LP and LP with a weighted-sum function are significantly
efficient compared to Cielo-LPwg. With constraints enabled, their efficiency
dramatically degrades. LP’s execution time is five seconds and six seconds
to obtain the objective values of CPU allocation and power consumption, re-
spectively. Therefore, LP’s execution time is greater than 7,211 seconds. The
existence of constraints greatly impacts the execution time of LP and LP with
a weighted-sum function while it does not impact Cielo-LPwg. Cielo-LPwg’s
execution time increases only two seconds by enabling constraints. In sum-
mary, Cielo-LPwsg yields near LP-optimal performance in some objectives and
it is robust against the existence of constraints.

[[fe I fB [ferc | frr]| Exec. time (s) |
Cielo-LPws: Co 16.82 | 150.68 | 290.33 | 44.47 832
LP only: Cso 15.00 150 54.56 8.06 23
LP only (WS): Cao || 41.10 | 450 | 499.97 | 8.12 7
Cielo-LPws: Cpr 16.53 | 150.44 | 283.25 | 41.89 834
LP only: Cys 15.00 — 54.56 — >7,211
LP only (WS): Oy || — = — — 3,600

Table 8 Comparison of Objective Values and Execution Time between Cielo-LPwg and
Linear Programming

Fig. 7 measures the hypervolume that a set of dominant strategies pro-
duces at each generation in Cielo-BASE and Cielo-LPwgs and illustrates how
it changes over generations. Cielo-LPywg consistently yields higher hypervol-
ume than Cielo-BASE over generations. Consistent with the results in Table 7,
Fig. 7 confirms that Cielo-LPyg is better optimized than Cielo-BASE.

Table 9 compares the convergence speed of Cielo-LPwg and Cielo-BASE
based on the hypervolume measurement in Fig. 7. Cielo-LPwgs and Cielo-
BASE spend 8 and 16 generations, respectively, to reach the hypervolume of
0.37. The speedup of Cielo-LPyyg is 2.0. Cielo-BASE reaches the hypervolume
of 0.3858 in 500 generations. In contrast, Cielo-LPwg requires only 91 gener-
ations to reach the same hypervolume, thereby yielding 5.5x speedup. These
results illustrate that LP successfully aids Cielo to boost its convergence speed.

Hypervolume
0.37] 0.375 | 0.38 [0.385 | 0.3858

Cielo-BASE 16 41 100 361 500
Cielo-LPws 8 14 37 79 91

[Speedup [[20 [29 [27 [46 | 55 |
Table 9 Comparison of Convergence Speed between Cielo-BASE and Cielo-LPwg

Table 10 compares Cielo with NSGA-IT along with FFA and BFA based
on their minimum, average and maximum objective values. Cielo outperforms
NSGA-II in all objectives except response time. Considering all four objec-

18 Yi Cheng Ren et al.

tives, Cielo yields 24.67% higher performance than NSGA-II. FFA and BFA
produce two extreme results. FFA yields the lowest power consumption (59.61
Watts) because it is designed to place VMs on the minimum number of hosts;
however, it sacrifices the other objectives. BFA performs the best in CPU allo-
cation (28.28%) because it is designed to place VMs on the hosts that maintain
higher resource availability. Cielo maintains balanced objective values in be-
tween FFA and BFA while performing better in response time, CPU allocation
and bandwidth allocation.

[Objectives H Minimum [Average [Maximum]
U Cielo-LPws 16.43 16.53 16.68
Aloention | NSGA- 28.86 30.29 31.35
(% /app) FFA 28.68 28.68 28.68
p BFA 28.28 28.28 28.28
. Ciclo-LPws 150.35 150.44 150.49
iiﬁi;vtli;h NSGA-II 278.32 288.27 205.89
(Kbps/app) FFA 1186 1186 1186
PS/aPP) —BEA 1200 1200 1200
b Cielo-LPws 274.19 283.25 290.69
Consé’xe’iion NSGA-II 1245.15 1246 1246.92
W /ap) FFA 59.12 50.61 60.02
PP BFA 341.74 341.85 341.95
N Ciclo-LPwsg 41.87 41.89 41.91
etsi;;r(l):se NSGA-TI 11.56 11.79 12.04
(msec fapp) | A 109.06 109.06 109.06
BFA 92.09 92.09 92.00

Table 10 Comparison of Objective Values among Cielo-LPywyg, NSGA-II, FFA and BFA

Table 11 shows the variance of objective values that Cielo and NSGA-II
yield in 20 different simulation runs. A lower variance means higher stability
(or higher similarity) in objective values (i.e., lower oscillations in objective
values) among different simulation runs. Cielo maintains significantly higher
stability than NSGA-II in all objectives. Cielo’s average stability is 97.21%
higher than NSGA-II’s. This result exhibits Cielo’s stability property (i.e.
ability to seek evolutionarily stable strategies), which NSGA-II does not have.

[[[Cielo-LPws [NSGA-II || Difference (%) |

CPU allocation 0.150 2.160 93.05%
Bandwidth allocation 0.060 5.599 98.92%
Power consumption 0.005 0.747 99.40%
Response time 0.006 0.239 97.48%

[Average [0055 [218 [9721% |

Table 11 Stability of Objective Values in Cielo-LPwg and NSGA-II

Fig. 8 shows two three-dimensional objective spaces that plot a set of dom-
inant strategies obtained from individual populations at each generation. Each

Adaptive and Stable Virtual Machine Placement in Clouds 19

blue dot indicates the average objective values that dominant strategies yield
at a particular generation in 20 simulation runs. The trajectory of blue dots il-
lustrates a path through which Cielo’s strategies evolve and improve objective
values. Gray and red dots represent 20 different sets of objective values at the
first and last generation in 20 simulation runs, respectively. While initial (gray)
dots disperse (because strategies are generated at random initially), final (red)
dots are overlapped in a small region. Consistent with Table 11, Fig. 8 verifies
Cielo’s stability: reachability to at least one Nash equilibria regardless of the
initial conditions.

7 Related Work

Numerous research efforts have been made to study heuristic algorithms for
application placement problems in clouds (e.g., [4-7,23-26]). Most of them
assume a single-tier application architecture and considers a single optimiza-
tion objective. For example, in [23-26], only power consumption is considered
as the objective. In contrast, Cielo assumes a multi-tier application architec-
ture (i.e., three tiers in an application) and considers multiple objectives. It is
designed to seek a trade-off solution among conflicting objectives.

Game theoretic algorithms have been used for a few aspects of cloud com-
puting; for example, application placement [27-29], task allocation [30] and
data replication [31]. In [27-29], greedy algorithms seek equilibria in applica-
tion placement problems. This means they do not attain the stability property
to reach equilibria as Cielo does.

Several genetic algorithms (e.g., [32,33]) and other stochastic optimization
algorithms (e.g., [34,35]) have been studied to solve application placement
problems in clouds. They seek the optimal placement solutions; however, they
do not consider stability. In contrast, Cielo aids applications to seek evolution-
arily stable solutions and stay at equilibria.

This paper is novel in that the EGT-backed evolutionary algorithm in Cielo
integrates optimization and stabilization processes to seek optimal and stable
solutions. Optimization and stabilization have been studied largely in isolation;
few attempts have been made so far to integrate them facilitate them simul-
taneously, except in a very limited number of work (e.g., [36]). Evolutionary
algorithms and other stochastic search algorithms often focus on optimization
and fail to seek stable solutions [37-39]. As a result, they can inconsistently
yield different sets of solutions in different runs/trials with the same problem
settings, especially when a given problem’s search space is large [40-43]. Con-
versely, game theoretic or EGT algorithms are often dedicated to seek stable
solutions (i.e., equilibria), which are not necessarily optimal [11,12,44].

To the best of the authors’ knowledge, this paper is the first attempt to in-
tegrate linear programming (LP) with an EGT-backed evolutionary algorithm.
There exist a few research efforts to integrate LP with traditional evolutionary
algorithms (e.g., [45,46]). Cielo is similar to [45] in that both work use LP to
solve a part of the entire problem and approach the rest of the problem with

20 Yi Cheng Ren et al.

an eviltionary algorithm based on LP-optimal solutions. In [46], Kumar et al.
solve a relaxed version of the problem with LP and use an evolutionary algo-
rithm for the complete problem based on the LP-optimal solutions. Both of
the two relevant work focus on optimization only, not stability, and consider
a single objective,while Cielo considers both optimization and stability with
respect to multiple objectives.

This paper reports a set of extensions to the authors’ prior work [47]. For
the problem formulation, this paper considers two extra optimization con-
straints in addition to the two constraints considered in [47]. As for the algo-
rithmic design, this paper investigates the integration of LP with Cielo, which
is out of the scope of [47]. For simulation evaluation, this paper conducts more
comprehensive comparative study than [47] with extra benchmark algorithms
(FFA, BFA and LP).

8 Conclusions

This paper proposes and evaluates Cielo, an evolutionary game theoretic al-
gorithm for adaptive and stable virtual machine (VM) placement in DVFS-
enabled clouds. It theoretically guarantees that every application seeks an
evolutionarily stable deployment strategy, which is an equilibrium solution
under given workload and resource availability. Simulation results verify that
Cielo performs VM placement in an adaptive and stable manner. By integrat-
ing linear programming, Cielo successfully gains performance improvement in
optimality and convergence speed with reasonable computational costs. Cielo
outperforms existing well-known heuristics in the quality and stability of VM
placement.

References

1. A. Eiben, “Evolutionary computing: the most powerful problem solver in the universe,”
Dutch Mathematical Archive, vol. 5, no. 3, pp. 126-131, 2002.

2. K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley &
Sons Inc, 2001.

3. K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan, “A fast elitist non-dominated sorting
genetic algorithm for multi-objective optimization: NSGA-IL,” in Proc. Conf. Parallel
Problem Solving from Nature, 2000.

4. X. Lia, Z. Qiana, S. Lua, and J. Wu, “Energy efficient virtual machine placement algo-
rithm with balanced and improved resource utilization in a data center,” Mathematical
and Computer Modelling, 58(5-6), 2013.

5. F. Ma, F. Liu, and Z. Liu, “Multi-objective optimization for initial virtual machine
placement in cloud data center,” J. Infor. and Computational Science, vol. 9, no. 16,
2012.

6. H. Goudarzi and M. Pedram, “Energy-efficient virtual machine replication and place-
ment in a cloud computing system,” in Proc. IEEE Int’l Conf. on Cloud Comput.,
2013.

7. H. Casanova, M. Stillwell, and F. Vivien, “Virtual machine resource allocation for ser-
vice hosting on heterogeneous distributed platforms,” in Proc. IEEE Int’l Parallel &
Distributed Processing Symposium, 2012.

Adaptive and Stable Virtual Machine Placement in Clouds 21

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi, “An analytical model
for multi-tier internet services and its applications,” in Proc. of ACM Int’l Conference
on Measurement and Modeling of Computer Systems, June 2005.

T. C. Shan and W. W. Hua, “Solution architecture for n-tier applications,” in Proc. of
IEEE Int’l Conference on Services Computing, September 2006.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, 1. Pratt,
and A. Warfield, “Xen and the art of virtualization,” in Proc. of ACM symposium on
operating systems principles, October 2003.

J. Weibull, Evolutionary Game Theory. MIT Press, 1996.

M. Nowak, Evolutionary Dynamics: Exploring the Equations of Life. Harvard Univer-
sity Press, 2006.

P. Taylor and L. Jonker, “Evolutionary stable strategies and game dynamics,” Elsevier
Mathematical Biosci., vol. 40(1), 1978.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective
genetic algorithm: NSGA-I1,” IEEE Trans Evol. Computat., vol. 6, no. 2, 2002.

N. Srinivas and K. Deb, “Multiobjective function optimization using nondominated
sorting genetic algorithms,” Evol. Computat., 2(3),1995.

C. Guo, H. Wu, K. Tan, L. Shiy, Y. Zhang, and S. Lu, “Dcell: A scalable and fault-
tolerant network structure for data centers,” in Proc. of ACM SIGCOM, 2008.

C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu, “Bcube:
A high performance, server-centric network architecture for modular data centers,” in
Proc. of ACM SIGCOM, 2009.

R. Perline, “Zipf’s law, the central limit theorem, and the random division of the unit
interval,” Physical Review E, vol. 54(1), 1996.

J. Tatemura, W.-P. Hsiung, and W.-S. Li, “Acceleration of web service workflow exe-
cution through edge computing,” in Proc. of Int’l WWW Conference, 2003.

T. Guerout, T. Monteil, G. D. Costa, R. N. Calheiros, R. Buyya, and M. Alexan-
dru, “Energy-aware simulation with dvfs,” Simulation Modelling Practice and Theory,
vol. 39, pp. 96-91, 2013.

J. Durillo, A. Nebro, and E. Alba, “The jMetal framework for multi-objective optimiza-
tion: Design and architecture,” in Proc. IEEE Congress on Evol. Computat., 2010.

E. Zitzler and L. Thiele, “Multiobjective optimization using evolutionary algorithms:
A comparative study,” in Proc. Int’l Conf. on Parallel Problem Solving from Nature,
1998.

von Laszewski, L. Wang, A. J. Younge, and X. He, “Power-aware scheduling of virtual
machines in DVFS-enabled clusters,” in Proc. IEEE Int’l Conf. on Clusters, 2009.

D. Kliazovich, P. Bouvry, and S. U. Khan, “DENS: data center energy-efficient network-
aware scheduling,” Cluster Computing, 16(1), 2013.

S. Chen, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and W. H. Sanders, “Blackbox
prediction of the impact of DVFS on end-to-end performance of multitier systems,”
ACM SIGMETRICS Performance Eval. Rev., vol. 37, no. 4, 2010.

Q. Wang, Y. Kanemasa, J. Li, C. A. Lai, M. Matsubara, and C. Pu, “Impact of DVFS
on n-tier application performance,” in Proc. ACM Conference on Timely Results in
Operating Systems, 2010.

S. U. Khan and C. Ardil, “Energy efficient resource allocation in distributed computing
systems,” in Proc. of Int’l Conf. on Distrib., High-Perf. and Grid Comp., 2009.

G. Wei, A. V. Vasilakos, Y. Zheng, and N. Xiong, “A game-theoretic method of fair
resource allocation for cloud computing services,” J. Supercomputing, vol. 54, no. 2,
2009.

N. Doulamis, A. Doulamis, A. Litke, A. Panagakis, T. Varvarigou, and E. Varvarigos,
“Adjusted fair scheduling and non-linear workload prediction for QoS guarantees in grid
computing,” Elsevier Computer Comm., vol. 30(3), 2007.

R. Subrata, A. Y. Zomaya, and B. Landfeldt, “Game theoretic approach for load bal-
ancing in computational grids,” IEEE Trans. Parall. Distr., vol. 19, no. 1, 2008.

S. Khan and I. Ahmad, “A pure Nash equilibrium based game theoretical method for
data replication across multiple servers,” IEFE T. Knowl. Data En., vol. 21, no. 4,
2009.

22

Yi Cheng Ren et al.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

H. Wada, J. Suzuki, Y. Yamano, and K. Oba, “E3: A multiobjective optimization frame-
work for sla-aware service composition,” IEEE Trans. Services Computing, vol. 5, no. 3,
2012.

H. A. Taboada, J. F. Espiritu, and D. W. Coit, “MOMS-GA: A Multi-Objective Multi-
State Genetic Algorithm for System Reliability Optimization Design Problems,” IEEE
Trans. Reliability, vol. 57, no. 1, 2008.

Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, “A multi-objective ant colony system
algorithm for virtual machine placement in cloud computing,” J. Computer and System
Sciences, vol. 79, no. 8, 2013.

X. Chang, B. Wang, L. Jigiang, W. Wang, and K. Muppala, “Green cloud virtual
network provisioning based ant colony optimization,” in Proc. ACM Int’l Conference
on Genetic and Evol. Computat, 2013.

M. Kodialam and T. Lakshman, “Detecting network intrusions via sampling: A game
theoretic approach,” in Proc. of IEEE Conference on Computer and Communications
Societies, 2003.

R. Masuchun and W. Ferrell, “Dynamic rescheduling with stability,” in Proc. of IEEE
Asian Control Conference, 2004.

S. Kundu, “A note on optimizality vs. stability - a genetic algorithm based approach,”
in Proc. of World Congress on Structural and Multidisciplinary Optimization, 1999.
M. Marra and B. Walcott, “Stability and optimality in genetic algorithm controllers,”
in Proc. of IEEE Int’l Symposium on Intelligent Control, 1996.

V. Togan and A. Daloglu, “An improved genetic algorithm with initial population strat-
egy and self-adaptive member grouping,” Computers and Structures, vol. 86, no. 11-12,
pp- 1204-1218, 2008.

O. Yugay, I. Kim, B. Kim, and F. Ko, “Hybrid genetic algorithm for solving travel-
ing salesman problem with sorted population,” in Proc. of IEEE Int’l Conference on
Convergence and Hybrid Information Technology, 2008.

X. Li, J. Zhuang, S. Wang, and Y. Zhang, “A particle swarm optimization algorithm
based on adaptive periodic mutation,” in Proc. of IEEE Int’l Conference on Natural
Computation, 2008.

W. B. Langdon and R. Poli, “Evolving problems to learn about particle swarm optimiz-
ers and other search algorithms,” IEEE Transactions on Evolutionary Computation,
vol. 11, no. 5, pp. 561-578, 2007.

N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani, Algorithmic Game Theory.
Cambridge University Press, 2007.

P. Garbacki and V. Naik, “A hybrid linear programming and evolutionary algorithm
based approach for on-line resource matching in grid environments,” in IEEE Int’l
Conference on Cluster Computing and the Grid, 2007.

S. K. Garg, P. Konugurthi, and R. Buyya, “A linear programming-driven genetic al-
gorithm for meta-scheduling on utility grids,” Int’l J. of Parallel, Emergent and Dis-
tributed Systems, vol. 26, no. 6, pp. 493-517, 2011.

Y. Ren, J. Suzuki, C. Lee, A. V. Vasilakos, S. Omura, and K. Oba, “Balancing per-
formance, resource efficiency and energy efficiency for virtual machine deployment in
DVFS-enabled clouds: An evolutionary game theoretic approach,” in Proc. of ACM
Genetic and Evolutionary Computation Conference, 2014.

Adaptive and Stable Virtual Machine Placement in Clouds

23

CPU Consumption (%)
245 255 265 275

o
T = — . ST ——
7 Zo - S
§@ z -
¢& 5 =
£ 5 @
< = Ew]
f ig £g :”
EX B [
2 £)
s g £
So 2 29
] 8 o
TN 5 41
! 9 =
g 2o .
_— &3 ® | = { —
Cn c. Cn . Cn . Cn .

(a) fe

(c) frc

(d) frr

Fig. 3 Cielo-BASE’s Objective Values with and without Constraints (Cas and Co)

‘K—) —7 - -1 T B —
= : g g2 5 ——
A=—IE B =
= ; S = ; £
5.1 | - 23! — 5 1 s
2 IR Y Ee [R
5ol 30 ; 2 2 —

Cm c., Cm c. & Cm c, Cm c.
(a) fo (b) /8 (c) fre (d) frr
Fig. 4 Cielo-LPwsg’s Objective Values w/ & w/o Constraints (Cps and Co). LP rate: 0.5%
T z —_ T Q| —
c H s~ < g
gol— 29 g £y
PR i £q 5
3Rl 3 : H 3 fo
S ; 5 B S 59
§¥ i2 28 5 £
3 B &< i S0 L Q
© Cm c, Cm c. & Cm c, Cm <.
(a) fo (b) /B (c) frc (d) frr
Fig. 5 Cielo-LPwg’s Objective Values w/ & w/o Constraints (Cps and Cs). LP rate: 5%
Ef z T z — °
N 1 fo —| ! 3
g6 £3 e £9 g
i | g £ 59
S g ° 3
g E £s ‘ ig| “a
- | gL I R q
o < o ‘. R ‘. T ‘.
(a) fo (b) fB (c) frc (d) frr
Fig. 6 Cielo-LPwgs’s Objective Values w/ & w/o Constraints (Cjs and Cs). LP rate: 10%

24

Yi Cheng Ren et al.

0.4
0.39 »
038

0.37
0.36
0.35
0.34
0.33
0.32
0.31

BASE
- LPus

0 100 200

300 400 500

Fig. 7 Comparison of Hypervolume and Convergence Speed between BASE and LPwsg

.
o" .

.
° ‘o Initial

Bandwidth Consumption (Kbps)

30

— 5
CPU Consumption (%)

20

Power Consumption (w:ms‘f\ -

280 15
(a) CPU allocation, Bandwidth allocation
and Energy consumption

350,

X J
“i-._Initial
.

300

250

[
o
o

Bandwidth Consumption (Kbps)

4
[$,14)]
SS

_CPU Consumption (%)

~ 20

~ .
Response Time (ms) _ >

(b) CPU allocation, Bandwidth allocation
and Response time

Fig. 8 Trajectory of OptCielo’s Solution through Generations

