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Abstract—Body-in-the-Cloud (BitC) is a cloud-integrated ar-
chitecture for body sensor networks (BSNs). This paper studies
an evolutionary game theoretic algorithm to configure BSNs
in an adaptive and stable manner. BitC allows BSNs to adapt
their configurations (sensing intervals and sampling as well
as data transmission intervals) to operational conditions (e.g.,
data request patterns) with respect to multiple performance
objectives such as resource consumption and data yield. BitC
theoretically guarantees that each BSN performs an evolutionarily
stable configuration strategy, which is an equilibrium solution
under given operational conditions. Simulation results verify this
theoretical analysis; BSNs seek equilibria to perform adaptive
and evolutionarily stable configuration strategies.

I. INTRODUCTION

Home healthcare is the most rapidly growing segment of
the U.S. healthcare system since 1990s for both acute and
chronic cares. In 2012, it recorded the highest spending growth
(5.1%) among all healthcare segments in the US [1].

To address the quality of life and economic issues in
home healthcare, various research efforts have been made for
developing body sensor networks (BSNs), each of which is a
per-patient wireless network of on/in-body sensors for, for ex-
ample, heart rate, oxygen saturation, body temperature and fall
detection [2]. BSNs can be used to remotely and continuously
perform physiological and activity monitoring for homebound
patients. This paper envisions cloud-integrated BSNs, which
virtualize sensors with clouds for home healthcare by taking
advantage of cloud computing features such as pay-per-use
billing and scalability in data storage and processing.

This paper proposes an architecture for cloud-integrated
BSNs, called Body-in-the-Cloud (BitC), which consists of the
sensor, edge and cloud layers. The sensor layer is a collection
of sensors and sensor nodes in BSNs. Each BSN operates
sensor nodes, each of which is equipped with sensors and wire-
lessly connected to a dedicated per-patient device or a patient’s
computer (e.g., smartphone or tablet machine) that serves as
a sink node. The edge layer consists of sink nodes, which
collect sensor data from sensor nodes in BSNs. The cloud
layer consists of cloud environments that host virtual sensors,
which are virtualized counterparts (or software counterparts)
of physical sensors in BSNs. Virtual sensors collect sensor
data from sink nodes in the edge layer and store those data
for future use. The cloud layer also hosts various applications
that obtain sensor data from virtual sensors and aid medical

staff (e.g., clinicians, hospital/visiting nurses and caregivers)
to share sensor data for clinical observation and intervention.

BitC performs push-pull hybrid communication between
its three layers. Each sensor node periodically collects data
from sensors attached to it based on sensor-specific sensing
intervals and sampling rates and transmits (or pushes) those
collected data to a sink node. The sink node in turn forwards
(or pushes) incoming sensor data periodically to virtual sensors
in clouds. When a virtual sensor does not have sensor data that
a cloud application requires, it obtains (or pulls) that data from
a sink node or a sensor node. This push-pull communication is
intended to make as much sensor data as possible available for
cloud applications by taking advantage of push communication
while allowing virtual sensors to pull any missing or extra
data anytime in an on-demand manner. For example, when an
anomaly is found in pushed sensor data, medical staff may pull
extra data in a higher temporal resolution to better understand a
patient’s medical condition. Given a sufficient amount of data,
they may perform clinical intervention, order clinical cares,
dispatch ambulances or notify family members of patients.

This paper focuses on configuring BSNs in BitC by tuning
sensing intervals and sampling rates for sensors as well as data
transmission intervals for sensor and sink nodes, and studies
two properties in configuring BSNs:
• Adaptability: Adjusting BSN configurations according

to operational conditions (e.g., data request patterns
placed by cloud applications and availability of re-
sources such as bandwidth and memory) with respect
to performance objectives such as bandwidth con-
sumption, energy consumption and data yield.

• Stability: Minimizing oscillations (non-deterministic
inconsistencies) in making adaptation decisions.

BitC leverages an evolutionary game theoretic approach to
configure BSNs. Each BSN maintains a set (or a population)
of configuration strategies. BitC theoretically guarantees that,
through a series of evolutionary games between BSN config-
uration strategies, the population state (i.e., the distribution of
strategies) converges to an evolutionarily stable equilibrium
regardless of the initial state. (A dominant strategy in the
evolutionarily stable population state is called an evolutionarily
stable strategy.) In this state, no other strategies except an
evolutionarily stable strategy can dominate the population.
Given this theoretical property, BitC allows each BSN to



operate at equilibria by using an evolutionarily stable strategy
to configure BSNs in a deterministic (i.e., stable) manner.
Simulation results verify this theoretical analysis; BSNs seek
equilibria to perform adaptive and evolutionarily stable config-
uration strategies. This paper also evaluates the performance
of BitC with several parameter settings.

Fig. 1: A Push-Pull Hybrid Communication in BitC

II. AN ARCHITECTURAL OVERVIEW OF BITC
BitC consists of the following three layers (Fig. 1).

Sensor Layer: operates one or more BSNs on a per-patient
basis (Fig. 1). Each BSN contains one or more sensor nodes in
a certain topology. This paper assumes the star topology. Each
sensor node is equipped with different types of sensors. It is
assumed to be battery-operated. (It has limited energy supply.)
It maintains a sensing interval and a sampling rate for each
sensor attached to it. Upon a sensor reading, it stores collected
data in its own memory space. Given a data transmission
interval, it periodically flushes all data stored in its memory
space and transmits the data to a sink node.

Edge Layer: consists of sink nodes, each of which partic-
ipates in a certain BSN and receives sensor data periodically
from sensor nodes in the BSN. A sink node stores incoming
sensor data in its memory space and periodically flushes stored
data to transmit (or push) them to the cloud layer. It maintains
the mappings between physical and virtual sensors. In other
words, it knows the origins and destinations of sensor data.
Different sink nodes have different data transmission intervals.
A sink node’s data transmission interval can be different from
the ones of sensor nodes in the same BSN. Sink nodes are
assumed to have limited energy supplies through batteries.

In addition to pushing sensor data to a virtual sensor, each
sink node receives a pull request from a virtual sensor when
the virtual sensor does not have data that a cloud application(s)
requires. If the sink node has the requested data in its memory,
it returns that data. Otherwise, it issues another pull request to
a sensor node that is responsible for the requested data. Upon
receiving a pull request, the sensor node returns the requested
data if it has the data in its memory. Otherwise, it returns an
error message to a could application.

Cloud Layer: operates on clouds to host applications that
allow medical staff to place continuous sensor data requests
on virtual sensors in order to monitor patients. If a virtual

sensor has data that an application requests, it returns that data.
Otherwise, it issues a pull request to a sink node. While push
communication carries out a one-way upstream travel of sensor
data, pull communication incurs a round trip for requesting
sensor data and receiving that data (or an error message).

III. BSN CONFIGURATION PROBLEM IN BITC

This section describes a BSN configuration problem for
which BitC seeks equilibrium solutions. Each BSN config-
uration consists of four types of parameters (i.e., decision
variables): sensing intervals and sampling rates for sensors as
well as data transmission intervals for sensor and sink nodes.
The problem is stated with the following symbols.
• B = {b1, b2, ..., bi, ..., bN} denotes the set of N BSNs,

each of which operates for a patient.
• Each BSN bi consists of a sink node (denoted by mi)

and M sensor nodes: bi = {hi1, hi2, ..., hij , ..., hiM}.
Each sensor node hij has L sensors: hij =
{sij1, sij2, ..., sijk, ..., sijL}. oijk is the data transmis-
sion interval for hij to transmit sensor data collected
from sijk. pijk and qijk are the sensing interval and
sampling rate for sijk. Sampling rate is defined as
the number of sensor data samples collected in a unit
time. Each sensor node stores collected sensor data in
its memory space until its next push transmission. If
the memory becomes full, it performs FIFO (First-In-
First-Out) data replacement. In a push transmission, it
flushes and sends out all data stored in its memory.

• omi
denotes the data transmission interval for mi to

forward (or push) sensor data incoming from sensor
nodes in bi In between two push transmissions, mi

stores sensor data from bi in its memory. It performs
FIFO data replacement if the memory becomes full.
In a push transmission, it flushes and sends out all
data stored in the memory.

• Rijk = {rijk1, rijk2, ..., rijkr, ..., rijk|Rijk|} denotes
the set of sensor data requests that cloud applications
issue to the virtual counterpart of sijk (s′ijk) during
the time period of W in the past. Each request rijkr
is characterized by its time stamp (tijkr) and time
window (wijkr). It retrieves all sensor data available
in the time interval [tijkr − wijkr, tijkr]. If s′ijk has
at least one data in the interval, it returns those data;
otherwise, it issues a pull request to mi.

• Rm
ijk ∈ Rijk denotes the set of sensor data requests

for which a virtual sensor s′ijk has no data. |Rm
ijk|

indicates the number of pull requests that s′ijk issues
to mi. In other words, Rijk \Rm

ijk is the set of sensor
data requests that s′ijk fulfills regarding sijk.

• Rs
ijk ∈ Rm

ijk ∈ Rijk denotes the set of sensor data
requests for which mi has no data. |Rs

ijk| indicates
the number of pull requests that mi issues to hij for
collecting data from sijk. Rm

ijk \ Rs
ijk is the set of

sensor data requests that mi fulfills regarding sijk.
This paper considers four performance objectives: band-

width consumption between the edge and cloud layers (fB),
energy consumption of sensor and sink nodes (fE), request
fulfillment for cloud applications (fR) and data yield for cloud
applications (fD). The first two objectives are to be minimized
while the others are to be maximized.



The bandwidth consumption objective (fB) is defined as
the total amount of data transmitted per a unit time between
the edge and cloud layers. This objective impacts the payment
for bandwidth consumption based on a cloud operator’s pay-
per-use billing scheme. It also impacts the lifetime of sink
nodes. fB is computed as follows.

fB =
1

W

N∑
i=1

M∑
j=1

L∑
k=1

(cijkdijk) +
1

W

N∑
i=1

M∑
j=1

L∑
k=1

|Rm
ijk|∑

r=1

(φijkrdijk + dr)

+
1

W

N∑
i=1

M∑
j=1

L∑
k=1

|Rs
ijk|∑

r=1

er(|Rs
ijk| − ηijkr) (1)

The first and second terms indicate the bandwidth con-
sumption by one-way push communication from the edge
layer to the cloud layer and two-way pull communication
between the cloud and edge layers, respectively. cijk denotes
the number of sensor data that sijk generates and sink nodes
in turn push to the cloud layer during W . dijk denotes the size
of each sensor data (in bits) that sijk generates. It is currently
computed as: qijk × 16 bits/sample. φijkr denotes the number
of sensor data that a pull request r ∈ Rm

ijk can collect from
sink nodes (φijkr = |Rm

ijk \ Rs
ijk|). dr is the size of a pull

request transmitted from the cloud layer to the edge layer.
The third term in Eq. 1 indicates the bandwidth consumption
by the error messages that sensors generate because they fail
to fulfill pull requests. ηijkr is the number of sensor data that
a pull request r ∈ Rs

ijk can collect from sensor nodes. er is
the size of an error message.

The energy consumption objective (fE) is defined as the
total amount of energy that sensor and sink nodes consume for
data transmissions during W . It impacts the lifetime of sensor
and sink nodes. It is computed as follows.

fE =

N∑
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L∑
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oijk
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+
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W
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etφijkr(dijk + dr)
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i=1

M∑
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|Rs
ijk|∑
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eter(|Rs
ijk| − ηijkr) (2)

The first and second terms indicate the energy consumption
by one-way push communication from the sensor layer to the
edge layer and two-way pull communication between the edge
layer and the sensor layer, respectively. et denotes the amount
of energy (in Watts) that a sensor or sink node consumes to
transmit a single bit of data. d′r denotes the size of a pull
request from the edge layer to the sensor layer. The third
and fourth terms indicate the energy consumption by push
and pull communication between the edge and cloud layer,
respectively. The fifth term indicates the energy consumption
for transmitting error messages on sensor and sink nodes.

The request fulfillment objective (fR) is the ratio of the
number of fulfilled requests over the total number of requests:

fR =

∑N
i=1

∑M
j=1

∑L
k=1

∑|Rijk|
r=1 IRijk

|Rijk|
× 100 (3)

IRijk
= 1 if a request r ∈ Rijk obtains at least one sensor

data; otherwise, IRijk
= 0.

The data yield objective (fY ) is defined as the total amount
of data that cloud applications gather for their users. This
objective impacts the informedness and situation awareness
for application users. It is computed as follows.

fY =
N∑
i=1

M∑
j=1

L∑
k=1

|Rm
ijk|∑

r=1

φijkr +

N∑
i=1

M∑
j=1

L∑
k=1

|Rs
ijk|∑

r=1

ηijkr + cijk (4)

BitC considers four constraints. The first constraint (CE) is
the upper limit for energy consumption: fE < CE . A violation
for the constraint (gE) is computed as gE = IE × (fE −CE)
where IE = 1 if fE > CE ; otherwise IE = 0.

The second constraint (CY ) is the lower limit for data yield:
fY > CY . A constraint violation (gY ) is computed as gY =
IY ×(CY −fY ) where IY = 1 if fY < CY ; otherwise IY = 0.

The third constraint (CR) is the lower limit for request
fulfillment: fR > CR. The constraint violation in request
fulfillment (gR) is computed as gR = IR × (CR − fR) where
IR = 1 if fR < CR; otherwise IR = 0.

The fourth constraint (CB) is the upper limit for bandwidth
consumption: fB < CB . A violation for this constraint (gB) is
computed as gB = IB×(fB−CB) where IB = 1 if fB > CB ;
otherwise IB = 0.

IV. BACKGROUND: EVOLUTIONARY GAME THEORY

In a conventional game, the objective of a player is to
choose a strategy that maximizes its payoff in a single game.
In contrast, evolutionary games are played repeatedly by
players randomly drawn from a population [3]. This section
overviews key elements in evolutionary games: evolutionarily
stable strategies (ESS) and replicator dynamics.

A. Evolutionarily Stable Strategies (ESS)

Suppose all players in the initial population are pro-
grammed to play a certain (incumbent) strategy k. Then, let
a small population share of players, x ∈ (0, 1), mutate and
play a different (mutant) strategy `. When a player is drawn
for a game, the probabilities that its opponent plays k and `
are 1 − x and x, respectively. Thus, the expected payoffs for
the player to play k and ` are denoted as U(k, x`+ (1− x)k)
and U(`, x`+ (1− x)k), respectively.
Definition 1. A strategy k is said to be evolutionarily stable
if, for every strategy ` 6= k, a certain x̄ ∈ (0, 1) exists, such
that the inequality

U(k, x`+ (1− x)k) > U(`, x`+ (1− x)k) (5)

holds for all x ∈ (0, x̄).
If the payoff function is linear, Equation 5 derives:

(1− x)U(k, k) + xU(k, `) > (1− x)U(`, k) + xU(`, `) (6)

If x is close to zero, Equation 6 derives either
U(k, k) > U(`, k) or U(k, k) = U(`, k) and U(k, `) > U(`, `) (7)

This indicates that a player associated with the strategy k
gains a higher payoff than the ones associated with the other
strategies. Therefore, no players can benefit by changing their
strategies from k to the others. This means that an ESS is
a solution on a Nash equilibrium. An ESS is a strategy that
cannot be invaded by any alternative (mutant) strategies that
have lower population shares.



B. Replicator Dynamics
The replicator dynamics describes how population shares

associated with different strategies evolve over time [4]. Let
λk(t) ≥ 0 be the number of players who play the strategy
k ∈ K, where K is the set of available strategies. The
total population of players is given by λ(t) =

∑ |K|
k=1λk(t).

Let xk(t) = λk(t)/λ(t) be the population share of players
who play k at time t. The population state is defined by
X(t) = [x1(t), · · · , xk(t), · · · , xK(t)]. Given X , the expected
payoff of playing k is denoted by U(k,X). The population’s
average payoff, which is same as the payoff of a player drawn
randomly from the population, is denoted by U(X,X) =∑ |K|

k=1xk · U(k,X). In the replicator dynamics, the dynamics
of the population share xk is described as follows. ẋk is the
time derivative of xk.

ẋk = xk · [U(k,X)− U(X,X)] (8)

This equation states that players increase (or decrease) their
population shares when their payoffs are higher (or lower) than
the population’s average payoff.
Theorem 1. If a strategy k is strictly dominated, then
xk(t)t→∞ → 0.

A strategy is said to be strictly dominant if its payoff is
strictly higher than any opponents. As its population share
grows, it dominates the population over time. Conversely,
a strategy is said to be strictly dominated if its payoff is
lower than that of a strictly dominant strategy. Thus, strictly
dominated strategies disappear in the population over time.

There is a close connection between Nash equilibria and
the steady states in the replicator dynamics, in which the popu-
lation shares do not change over time. Since no players change
their strategies on Nash equilibria, every Nash equilibrium
is a steady state in the replicator dynamics. As described in
Section IV-A, an ESS is a solution on a Nash equilibrium.
Thus, an ESS is a solution at a steady state in the replicator
dynamics. In other words, an ESS is the strictly dominant
strategy in the population on a steady state.

BitC maintains a population of configuration strategies for
each BSN. In each population, strategies are randomly drawn
to play games repeatedly until the population state reaches a
steady state. Then, BitC identifies a strictly dominant strategy
in the population and configures a BSN based on the strategy
as an ESS.

V. BODY-IN-THE-CLOUD

BitC maintains N populations, {P1,P2, ...,PN}, for N
BSNs and performs games among strategies in each popu-
lation. Each strategy s(bi) specifies a particular configuration
for a BSN bi using four types of parameters: sensing intervals
and sampling rates for sensors (pijk and qijk) as well as data
transmission intervals for sink and sensor nodes (omi

and oijk).

s(bi) =
⋃

j∈1..M

⋃
k∈1..L

(omi , oijk, pijk, qijk) 1 < i < N (9)

Algorithm 1 shows how BitC seeks an evolutionarily stable
configuration strategy for each BSN through evolutionary
games. In the 0-th generation, strategies are randomly gen-
erated for each of N populations {P1,P2, ...,PN} (Line 2).
Those strategies may or may not be feasible. Note that a
strategy is said to be feasible if it violates none of four
constraints described in Section III.

In each generation (g), a series of games are carried out
on every population (Lines 4 to 26). A single game randomly
chooses a pair of strategies (s1 and s2) and distinguishes
them to the winner and the loser with respect to performance
objectives described in Section III (Lines 7 to 9). The loser dis-
appears in the population. The winner is replicated to increase
its population share and mutated with polynomial mutation
(Lines 10 to 17) [5]. Mutation randomly chooses a parameter
(or parameters) in a given strategy with a certain mutation rate
Pm and alters its/their value(s) at random (Lines 12 to 14).

Once all strategies play games in the population, BitC
identifies a feasible strategy whose population share (xs) is the
highest and determines it as a dominant strategy (di) (Lines 20
to 24). BitC configures a BSN with parameters contained in
the dominant strategy.

Algorithm 1 Evolutionary Process in BitC
1: g = 0
2: Randomly generate the initial N populations for N BSNs: P =
{P1,P2, ...,PN}

3: while g < Gmax do
4: for each population Pi randomly selected from P do
5: P ′i ← ∅
6: for j = 1 to |Pi|/2 do
7: s1 ← randomlySelect(Pi)
8: s2 ← randomlySelect(Pi)
9: winner ← performGame(s1, s2)

10: replica ← replicate(winner)
11: for each parameter in replica do
12: if random() ≤ Pm then
13: replica ← mutate(winner)
14: end if
15: end for
16: Pi \ {s1, s2}
17: P ′i ∪ {winner, replica}
18: end for
19: Pi ← P ′i
20: di ← argmaxs∈Pi

xs
21: while di is infeasible do
22: Pi \ {di}
23: di ← argmaxs∈Pi

xs
24: end while
25: Configure a BSN in question based on di.
26: end for
27: g = g + 1

28: end while

Algorithm 2 shows how to select the winner in a game
(performGame() in Algorithm 1). This selection process de-
pends on the dominance relationship between given two strate-
gies and their feasibility. A feasible strategy s1 is said to
dominate another feasible strategy s2 (denoted by s1 � s2)
if both of the following conditions are hold:

• s1’s objective values are superior than, or equal to,
s2’s in all objectives.

• s1’s objective values are superior than s2’s in at least
one objectives.

If given two strategies are feasible and they are non-
dominated with each other, the winner is randomly chosen
(Line 8). If both of them are infeasible, their dominance
relationship is determined based on their constraint violation
(Lines 17 to 23). An infeasible strategy s1 is said to dominate
another infeasible strategy s2 (s1 �C s2) iif:

• s1’s constraint violation is lower than, or equal to, s2’s
in every constraint, and

• s1’s constraint violation is lower than s2’s in at least
one constraints.



Algorithm 2 Game between Strategies (performGame())
Input: s1 and s2: Strategies to play a game
Output: Winner of the game

1: if s1 and s2 are feasible then
2: if s1 � s2 then
3: return s1
4: end if
5: if s2 � s1 then
6: return s2
7: end if
8: return randomlySelect({s1, s2})
9: end if

10: if s1 is feasible and s2 is infeasible then
11: return s1
12: end if
13: if s2 is feasible and s1 is infeasible then
14: return s2
15: end if
16: if s1 and s2 are infeasible then
17: if s1 �C s2 then
18: return s1
19: end if
20: if s2 �C s1 then
21: return s2
22: end if
23: return randomlySelect({s1, s2})
24: end if

VI. STABILITY ANALYSIS

This section analyzes BitC’s stability (i.e., reachability to
at least one of Nash equilibrium) by proving the state of each
population converges to an evolutionarily stable equillibrium.
The proof consists of three steps: (1) designing a set of differ-
ential equations that describe the dynamics of the population
state, (2) proving an strategy selection process has equilibria,
and (3) proving the the equilibria are asymptotically (or
evolutionarily) stable. The proof uses the following symbols:
• S denotes the set of available strategies. S∗ denotes a

set of strategies that appear in the population.
• X(t) = {x1(t), x2(t), · · · , x|S∗|(t)} denotes a popu-

lation state at time t where xs(t) is the population
share a strategy s ∈ S.

∑
s∈S∗(xs) = 1.

• Fs denotes the fitness of a strategy s. It is a relative
value that is determined in a game against an opponent
based on the dominance relationship between them
(Algorithm 2). The winner of a game earns a higher
fitness than the loser.

• psk = xk · φ(Fs − Fk) denotes the probability that
a strategy s is replicated by winning a game against
another strategy k. φ(Fs − Fk) is the probability that
the fitness of s is higher than that of k.

The dynamics of the population share of s is described as:

ẋs =
∑

k∈S∗,k 6=s

{xspsk − xkp
k
s}

= xs
∑

k∈S∗,k 6=s

xk{φ(Fs − Fk)− φ(Fk − Fs)} (10)

Note that if s is strictly dominated, xs(t)t→∞ → 0.

Theorem 2. The state of a population converges to an equi-
librium.

Proof: It is true that different strategies have different
fitness values. In other words, only one strategy has the
highest fitness among others. Given Theorem 1, assuming that
F1 > F2 > · · · > F|S∗|, the population state converges to an

equilibrium: X(t)t→∞ = {x1(t), x2(t), · · · , x|S∗|(t)}t→∞
= {1, 0, · · · , 0}.
Theorem 3. The equilibrium found in Theorem 2 is asymp-
totically stable.

Proof: At the equilibrium X = {1, 0, · · · , 0}, a set of
differential equations can be downsized by substituting x1 =
1− x2 − · · · − x|S∗|

żs = zs[cs1(1− zs) +
|s∗|∑

i=2,i 6=s

zi · csi], s, k = 2, ..., |S∗| (11)

where csk ≡ φ(Fs − Fk) − φ(Fk − Fs)) and Z(t) =
{z2(t), z3(t), · · · , z|S∗|(t)} denotes the corresponding down-
sized population state. Given Theorem 1, Zt→∞ = Zeq =
{0, 0, · · · , 0} of (|S∗| − 1)-dimension.

If all Eigenvalues of Jaccobian matrix of Z(t) has negative
real parts, Zeq is asymptotically stable. The Jaccobian matrix
J’s elements are described as follows where s, k = 2, ..., |S∗|.

Jsk =

[
∂żs

∂zk

]
|Z=Zeq

=

∂zs[cs1(1− zs) +∑|S∗|i=2,i 6=s zi · csi]
∂zk


|Z=Zeq

(12)

Therefore, J is given as follows, where c21, c31, · · · , c|S∗|1
are J’s Eigenvalues.

J =


c21 0 · · · 0
0 c31 · · · 0
...

...
. . .

...
0 0 · · · c|S∗|1

 (13)

cs1 = −φ(F1 − Fs) < 0 for all s; therefore, Zeq =
{0, 0, · · · , 0} is asymptotically stable.

VII. SIMULATION EVALUATION

This section evaluates BitC through simulations and dis-
cusses how BitC allows BSNs to to adapt their configurations
to given operational conditions (e.g., data request patterns
placed by cloud applications and memory space availability
in sink and sensor nodes) Simulations are configured with the
parameters shown in Table I.

TABLE I: Simulation Settings
Parameter Value

Duration of a simulation (W ) 10,800 seconds (3 hours)
Number of BSNs (N ) 10

Number of sensor nodes in a BSN (M ) 3
Number of sensors per a sensor node (L) 4

Memory space in a sensor node 2 GB
Memory space in a sink node 16 GB

Total number of data requests from cloud apps 1,000
Size of a data request (dr and d′r) 100 bytes

Size of an error message (er) 250 bytes
Energy consumption for a single bit of data (et) 0.001 Watt

Time window for a data request to a body temp sensor [0, 60 secs]
Time window for a data request to an oximeter [0, 60 secs]

Time window for a data request to an acelerometer [0, 1800 secs]
Time window for a data request to an ECG sensor [0, 600 secs]

Number of generations (Gmax) 400
Population size (|Pi|) 100
Mutation rate (Pm) 1/v

Upper limit of bandwidth consumption (CB ) 100 Kbps
Lower limit of data yield (CY ) 6000

Upper limit of energy consumption (CE ) 1 KWatts
Lower limit of request fulfillment (CR) 95%

Cloud applications issue 1,000 data requests during three
hours. Requests are uniformly distributed over virtual sensors.



(a) Hypervolume (b) fR and fB (c) fY and fE

Fig. 2: Hypervolume and Objective Values (Request Fulfillment: fR, Bandwidth Consumption: fB , Data Yield: fY , Energy Consumption: fE)

Each sensor node contains four sensors: body temperature sen-
sor, oximeter, accelerometer and ECG sensor. A time window
is randomly set for each request to a sensor. For example, it is
set with the uniform distribution in between 0 and 60 seconds
for an oximeter. Mutation rate is set to 1/v where v is the
number of parameters in a strategy. Every simulation result is
the average with 20 independent simulation runs.

Table II examines how a mutation-related parameter, called
distribution index (ηm in [5]), impacts the performance of
BitC. This parameter controls how likely a mutated strat-
egy is similar to its original. (A higher distribution index
makes a mutant more similar to its original.) In Table II,
the performance of BitC is evaluated with the hypervolume
measure that a set of dominant strategies yield in the 400th
generation. The hypervolume metric indicates the union of
the volumes that a given set of solutions dominates in the
objective space [6]. A higher hypervolume means that a set of
solutions is more optimal. As shown in Table II, BitC yields the
best performance with the distribution index value of 45. (No
constraints are set to obtain this result.) Thus, this parameter
setting is used in all successive simulations.

TABLE II: Impacts of Distribution Index Values on Hypervolume
Distribution Index Hypervolume Distribution Index Hypervolume

10 0.848 45 0.878
20 0.861 50 0.855
30 0.871 60 0.797
40 0.874

Fig. 2 shows how BitC improves its performance through
generations. Four constraints (CB , CY , CE and CR) are
enabled. (Table I). Fig. 2a shows how hypervolume increases
through generations. At each generation, hypervolume is mea-
sured with a set of dominant strategies taken from individual
populations. Hypervolume increases rapidly in the beginning
of a simulation and exceeds 0.8 around the 30th generation.
It reaches 0.9 at the last generation. Figs. 2b and 2c show
the changes of objective values over generations. All four
constraints are satisfied at the last generation. The two figures
illustrate that BitC improves its objective values subject to
given constraints by balancing the trade-offs among conflicting
objectives. For example, in Fig. 2b, BitC improves both request
fulfillment and bandwidth consumption through generations
while the two objectives conflict with each other.

Fig. 3 shows two three-dimensional objective spaces that

plot a set of dominant strategies obtained from individual
populations at each generation. Each blue dot indicates the
average objective values that dominant strategies yield at a
particular generation in 20 simulation runs. The trajectory of
blue dots illustrates a path through which strategies evolve
and improve objective values. Gray and red dots represent 20
different sets of objective values at the first and last generation
in 20 simulation runs, respectively. While initial (gray) dots
disperse (because strategies are generated at random initially),
final (red) dots are clustered in a smaller region(s). This implies
BitC’s stability: reachability to at least one Nash equilibria
regardless of the initial conditions.

Fig. 3: Three-dimensional Objective Spaces

Table III and Figure 4 show how different constraint
combinations impact on the performance of BitC in objec-
tive values and hypervolume, respectively. BitC successfully
satisfies all the constraint combinations by generating different
shapes/amounts of hypervolume. In general, it generates lower
hypervolume when stricter constraints are given.



TABLE III: Objective Values at the Last Generation under Different
Sets of Constraints

Constraint Combination
Request

Fulfillment
(%)

Bandwidth
Consumption

(Kbps)

Data
Yield

Energy
Consumption
(Watts/sec)

CB : 300
CY : 20,000

CR: 90 CE : 3.0

Max 98.2 45.01 66,225 0.68
Avg 98 42.68 62,500 0.62
Min 97.9 39.33 57,530 0.57

CB : 50
CE : 10

Max 97.1 28.03 41,666 0.41
Avg 97 26.88 40,816 0.39
Min 97 25.62 39,884 0.37

CY : 50000
CR: 95

Max 98.3 164.58 64,935 1.59
Avg 97.6 148.49 62,227 1.43
Min 97 123.86 58,898 1.22

CY : 50000
CR: 98

Max 99 58.21 65,789 0.65
Avg 98.7 53.32 64,102 0.625
Min 98.5 49.02 63,388 0.58

Fig. 4: Hypervolume under Different Sets of Constraints

VIII. RELATED WORK

This paper extends a prior work on cloud-integrated
BSNs [7]. Compared to [7], this paper formulates a more
realistic problem by accommodating parameters configurable
in Simmer’s sensor nodes1. Moreover, this paper uses an evo-
lutionary game theoretic algorithm that possesses stability in
configuring BSNs while a genetic algorithm is used in [7]. As
stochastic search algorithms, genetic algorithms lack stability.

Various architectures and research tools have been
proposed for cloud-integrated sensor networks including
BSNs [8]–[13]. Hassan et al. [8], Aberer et al. [9],
Gaynor et al. [10] and Boonma et al. [11] assume three-tier
architectures similar to BitC and investigate publish/subscribe
communication between the edge layer to the cloud layer.
Their focus is placed on push communication. In contrast,
BitC investigates push-pull hybrid communication between
the sensor layer and the cloud layer through the edge layer.
Yuriyama et al. propose a two-tier architecture that consists of
the sensor and cloud layers [12]. The architectures proposed by
Yuriyama et al. and Fortino et al. [13] are similar to BitC in that
they leverage the notion of virtual sensors. However, they do
not consider push-pull (nor publish/subscribe) communication.
All the above-mentioned work do not consider adaptive/stable
configurations of sensor networks as BitC does.

Push-pull hybrid communication has been studied in sensor
networks [14]–[17]. However, few efforts exist to study it
between the edge and cloud layers in the context of cloud-
integrated sensor networks. Unlike those relevant work, this
paper formulates a sensor network configuration problem with

1http://www.shimmersensing.com/

cloud-specific objectives as well as the ones in sensor networks
and seeks adaptive/stable solutions for the problem.

IX. CONCLUSION

This paper considers a layered push-pull hybrid communi-
cation for cloud-integrated BSNs and formulates a BSN config-
uration problem to seek equilibrium solutions. An evolutionary
game theoretic algorithm is used to approach the problem. A
theoretical analysis proves that the proposed algorithm allows
each BSN to operate at an equilibrium by using an evolutionar-
ily stable configuration strategy in a deterministic (i.e., stable)
manner. Simulation results verify this theoretical analysis;
BSNs seek equilibria to perform adaptive and evolutionarily
stable configuration strategies.
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