
Adaptability and Stability in Dynamic Integration of
Body Sensor Networks with Clouds

Yi Cheng Ren∗, Junichi Suzuki∗, Shingo Omura‡ and Ryuichi Hosoya‡
∗ University of Massachusetts, Boston

Boston, MA 02125-3393, USA
Email: {yiren001,jxs}@cs.umb.edu

‡OGIS International, Inc.
San Mateo, CA 94402, USA

Email: {omura,hosoya}@ogis-international.com

Abstract—This paper considers a multi-tier architecture for
cloud-integrated body sensor networks (BSNs), called Body-in-
the-Cloud (BitC), which is designed for home healthcare with on-
body physiological and activity monitoring sensors. This paper
formulates an optimization problem to integrate BSNs with a
cloud in BitC and approaches the problem with an evolutionary
game theoretic algorithm. BitC allows BSNs to adapt their
configurations (i.e., sensing intervals) to operational conditions
(e.g., data request patterns) with respect to multiple performance
objectives such as resource consumption and data yield. BitC the-
oretically guarantees that each BSN performs an evolutionarily
stable configuration strategy, which is an equilibrium solution
under given operational conditions. Simulation results verify this
theoretical analysis; BSNs seek equilibria to perform adaptive
and evolutionarily stable configuration strategies under dynamic
changes of operational conditions. BitC outperforms NSGA-III
in optimality, stability, convergence speed and execution time.

Index Terms—Body sensor networks, Cloud computing, Mul-
tiobjective optimization, Evolutionary algorithms

I. INTRODUCTION

This paper studies an architecture, called Body-in-the-Cloud
(BitC), which is designed to integrate body sensor networks
(BSNs) with cloud computing platforms for remotely and
continuously performing physiological and activity monitor-
ing for homebound patients. A BSN is a wireless network
of on/in-body sensors for, for example, heart rate, oxygen
saturation and fall detection. BitC virtualizes per-patient BSNs
onto clouds by taking advantage of cloud computing features
such as scalability in data processing/storage and availability
through multi-regional application deployment.

This paper formulates an optimization problem to integrate
BSNs with a cloud in BitC by adjusting configuration param-
eters (e.g., sensing intervals and data transmission intervals)
and approaches the problem with BitC’s integration optimizer,
which exhibits the following properties:
• Adaptability: BItC allows BSNs to adapt and optimize

configurations according to operational conditions (e.g., data
request patterns placed by cloud applications and availability
of resources such as bandwidth and memory) with respect
to performance objectives such as bandwidth consumption,
energy consumption and data yield.

• Stability: BitC allows BSNs to seek stable adaptation de-
cisions by minimizing oscillations (or non-deterministic

inconsistencies) in decision making. Stability is considered
as the reachability to at least one of equilibrium solutions
in decision making. A lack of stability results in making
inconsistent adaptation decisions in different optimization
attempts/trials with the same problem settings.
BitC is designed to attain the adaptability and stability prop-

erties with evolutionary computation (EC) and evolutionary
game theory (EGT), respectively. BitC leverages EC, partic-
ularly an evolutionary multiobjective optimization algorithm
(EMOA), because, in general, EMOAs are robust problem-
independent search methods that seek optimal solutions (i.e.,
optimal adaptation decisions) with reasonable computational
costs by maintaining a small ratio of search coverage to
the entire search space [1]. BitC employs EGT as a means
to mathematically formulate adaptive decision making and
theoretically guarantee that each decision making process
converges to an evolutionarily stable equilibrium where a
specific adaptation decision is deterministically made under
a particular set of operational conditions [2].

By integrating EC and EGT, BitC provides an EGT-backed
EMOA that allows BSNs to (1) seek the solutions to optimally
adapt their configurations and (2) operate at equilibria by
making evolutionarily stable adaptation decisions. In BitC,
each BSN maintains a set (or a population) of configuration
strategies (solution candidates), each of which specifies a set
of configuration parameters for that BSN. BitC theoretically
guarantees that, through a series of evolutionary games be-
tween BSN configuration strategies, the population state (i.e.,
the distribution of strategies) converges to an evolutionarily
stable equilibrium regardless of the initial state. (A dominant
strategy in the evolutionarily stable population state is called
an evolutionarily stable strategy (ESS).) Given this theoretical
property, BitC allows each BSN to operate at an equilibrium
by using an ESS as an adaptive configuration strategy.

This paper describes the design of BitC and evaluates
its optimality and stability in making adaptation decisions
under dynamic changes of operational conditions. Simulation
results demonstrate that BitC allows BSNs to seek equilibria
to perform evolutionarily stable configurarion strategies and
adapt their configurations to given operational conditions. It
outperforms NSGA-III, one of the state-of-the-art EMOAs [3],

in optimality, stability, convergence speed and execution time.
Under dynamic changes of operational conditions, BitC effi-
ciently reconfigures BSNs by repeating its optimization pro-
cess based on the history of its prior optimization processes.
The notion of dynamic optimization termination allows BitC
to gain significant speedup in the execution time of its opti-
mization process.

Fig. 1: An Architectural Overview of BitC

II. AN ARCHITECTURAL OVERVIEW OF BITC
BitC consists of the sensor, edge and cloud layers (Fig. 1).
Sensor Layer: operates one or more BSNs on a per-

patient basis. Each BSN contains one or more sensor nodes,
each of which is equipped with different types of sensors.
Sensor nodes are wirelessly connected to a dedicated per-
patient device or a patient’s computer (e.g., a smartphone or
tablet machine) that serves as a sink node. This paper assumes
the star topology among a sink node and sensor nodes. Each
sensor node is assumed to be battery-operated. (It has limited
energy supply.) It maintains a sensing interval and a sampling
rate for each sensor attached to it. Upon a sensor reading, it
stores collected data in its own memory space. Given a data
transmission interval, it periodically flushes all data stored in
its memory space and transmits the data to a sink node.

Edge Layer: consists of sink nodes, each of which partic-
ipates in a certain BSN and receives sensor data periodically
from sensor nodes in the BSN. A sink node stores incoming
sensor data in its memory space and periodically flushes stored
data to transmit them to the cloud layer. Different sink nodes
have different data transmission intervals. A sink node’s data
transmission interval can be different from the ones of sensor
nodes in the same BSN. Sink nodes are assumed to have
limited energy supplies through batteries.

Cloud layer: operates on a cloud(s) that host virtual
sensors, which are virtualized counterparts (or software coun-
terparts) of physical sensors in BSNs. Virtual sensors collect
sensor data from sink nodes in the edge layer and store
those data for future use. The cloud layer also hosts various
applications that obtain sensor data from virtual sensors and
aid medical staff (e.g., clinicians, hospital/visiting nurses and
caregivers) to monitor patients and share sensor data for
clinical observation and intervention.

BitC performs push-pull hybrid communication between its
three layers. Each sensor node periodically collects data from

a sensor(s) attached to it based on sensor-specific sensing
intervals and sampling rates and transmits (or pushes) those
collected data to a sink node. The sink node in turn forwards
(or pushes) incoming sensor data periodically to virtual sensors
in a cloud(s). Cloud applications request sensor data to virtual
sensors. If a virtual sensor has requested data, it returns that
data. Otherwise, it issues a pull request to a sink node. If
the sink node has the requested data in its memory space, it
returns that data. Otherwise, it issues another pull request to
a sensor node that is responsible for the requested data. Upon
receiving a pull request, the sensor node returns the requested
data if it has the data in its memory. Otherwise, it returns an
error message to a cloud application through a sink node.

While push communication carries out a one-way upstream
travel of sensor data, pull communication incurs a round
trip for requesting sensor data and receiving that data (or
an error message). This push-pull communication is intended
to make as much sensor data as possible available for cloud
applications by taking advantage of push communication while
allowing virtual sensors to pull any missing or extra data
anytime in an on-demand manner. For example, when an
anomaly is found in pushed sensor data, medical staff may pull
extra data in a higher temporal resolution to better understand a
patient’s medical condition. Given a sufficient amount of data,
they may perform clinical intervention, order clinical cares,
dispatch ambulances or notify family members of patients.

III. BSN CONFIGURATION PROBLEM IN BITC

This section describes a BSN configuration problem for
which BitC seeks equilibrium solutions. Each BSN config-
uration consists of four types of parameters (i.e., decision
variables): sensing intervals and sampling rates for sensors as
well as data transmission intervals for sensor and sink nodes.
The problem is stated with the following symbols.
• B = {b1, b2, ..., bi, ..., bN} denotes the set of N BSNs, each

of which operates for a patient.
• Each BSN bi consists of a sink node (denoted by mi) and M

sensor nodes: bi = {hi1, hi2, ..., hij , ..., hiM}. Each sensor
node hij has L sensors: hij = {sij1, sij2, ..., sijk, ..., sijL}.
oijk is the data transmission interval for hij to transmit
sensor data collected from sijk. pijk and qijk are the sensing
interval and sampling rate for sijk. Sampling rate is defined
as the number of sensor data samples collected in a unit
time. Each sensor node stores collected sensor data in
its memory space until its next push transmission. If the
memory becomes full, it performs FIFO (First-In-First-Out)
data replacement. In a push transmission, it flushes and
sends out all data stored in its memory.

• omi denotes the data transmission interval for mi to forward
(or push) sensor data incoming from sensor nodes in bi In
between two push transmissions, mi stores sensor data from
bi in its memory. It performs FIFO data replacement if the
memory becomes full. In a push transmission, it flushes and
sends out all data stored in the memory.

• Rijk = {rijk1, rijk2, ..., rijkr, ..., rijk|Rijk|} denotes the set
of sensor data requests that cloud applications issue to the

virtual counterpart of sijk (s′ijk) during the time period of W
in the past. Each request rijkr is characterized by its time
stamp (tijkr) and time window (wijkr). It retrieves all sensor
data available in the time interval [tijkr − wijkr, tijkr]. If
s′ijk has at least one data in the interval, it returns those
data; otherwise, it issues a pull request to mi.

• Rm
ijk ⊆ Rijk denotes the set of sensor data requests for

which a virtual sensor s′ijk has no data. |Rm
ijk| indicates

the number of pull requests that s′ijk issues to mi. In other
words, Rijk \ Rm

ijk is the set of sensor data requests that
s′ijk fulfills regarding sijk.

• Rs
ijk ⊆ Rm

ijk ⊆ Rijk denotes the set of sensor data requests
for which mi has no data. |Rs

ijk| indicates the number of
pull requests that mi issues to hij for collecting data from
sijk. Rm

ijk \ Rs
ijk is the set of sensor data requests that mi

fulfills regarding sijk.

This paper considers four performance objectives: band-
width consumption between the edge and cloud layers (fB),
energy consumption of sensor and sink nodes (fE), request
fulfillment for cloud applications (fR) and data yield for cloud
applications (fD). The first two objectives are to be minimized
while the others are to be maximized.

The bandwidth consumption objective (fB) is defined as the
total amount of data transmitted per a unit time between the
edge and cloud layers. This objective impacts the payment for
bandwidth consumption based on a cloud operator’s pay-per-
use billing scheme. It also impacts the lifetime of sink nodes.
fB is computed as follows.

fB =
1

W

N∑
i=1

M∑
j=1

L∑
k=1

(cijkdijk) +
1

W

N∑
i=1

M∑
j=1

L∑
k=1

|Rm
ijk|∑

r=1

(φijkrdijk + dr)

+
1

W

N∑
i=1

M∑
j=1

L∑
k=1

|Rs
ijk|∑

r=1

er(|Rs
ijk| − ηijkr) (1)

The first and second terms indicate the bandwidth consump-
tion by one-way push communication from the edge layer to
the cloud layer and two-way pull communication between the
cloud and edge layers, respectively. cijk denotes the number
of sensor data that sijk generates and sink nodes in turn
push to the cloud layer during W . dijk denotes the size of
each sensor data (in bits) that sijk generates. It is currently
computed as: qijk× 16 bits/sample. φijkr denotes the number
of sensor data that a pull request r ∈ Rm

ijk can collect from
sink nodes (φijkr = |Rm

ijk \ Rs
ijk|). dr is the size of a pull

request transmitted from the cloud layer to the edge layer.
The third term in Eq. 1 indicates the bandwidth consumption
by the error messages that sensors generate because they fail
to fulfill pull requests. ηijkr is the number of sensor data that
a pull request r ∈ Rs

ijk can collect from sensor nodes. er is
the size of an error message.

The energy consumption objective (fE) is defined as the
total amount of energy that sensor and sink nodes consume
for data transmissions during W . It impacts the lifetime of
sensor and sink nodes. It is computed as follows.

fE =

N∑
i=1

M∑
j=1

L∑
k=1

W

oijk
etdijk +

N∑
i=1

M∑
j=1

L∑
k=1

|Rs
ijk|∑

r=1

etηijkr(dijk + d′r)

+
N∑
i=1

M∑
j=1

L∑
k=1

W

omi

etdijk +
N∑
i=1

M∑
j=1

L∑
k=1

|Rm
ijk|∑

r=1

etφijkr(dijk + dr)

+ 2×
N∑
i=1

M∑
j=1

L∑
k=1

|Rs
ijk|∑

r=1

eter(|Rs
ijk| − ηijkr) (2)

The first and second terms indicate the energy consumption
by one-way push communication from the sensor layer to the
edge layer and two-way pull communication between the edge
layer and the sensor layer, respectively. et denotes the amount
of energy (in Watts) that a sensor or sink node consumes to
transmit a single bit of data. d′r denotes the size of a pull
request from the edge layer to the sensor layer. The third
and fourth terms indicate the energy consumption by push
and pull communication between the edge and cloud layer,
respectively. The fifth term indicates the energy consumption
for transmitting error messages on sensor and sink nodes.

The request fulfillment objective (fR) is the ratio of the
number of fulfilled requests over the total number of requests:

fR =

∑N
i=1

∑M
j=1

∑L
k=1

∑|Rijk|
r=1 IRijk

|Rijk|
× 100 (3)

IRijk
= 1 if a request r ∈ Rijk obtains at least one sensor

data; otherwise, IRijk
= 0.

The data yield objective (fY) is defined as the total amount
of data that cloud applications gather for their users. This
objective impacts the informedness and situation awareness
for application users. It is computed as follows.

fY =

N∑
i=1

M∑
j=1

L∑
k=1

|Rm
ijk|∑

r=1

φijkr +

N∑
i=1

M∑
j=1

L∑
k=1

|Rs
ijk|∑

r=1

ηijkr + cijk (4)

BitC considers four constraints. The first constraint (CE) is
the upper limit for energy consumption: fE < CE . A violation
for the constraint (gE) is computed as gE = IE × (fE −CE)
where IE = 1 if fE > CE ; otherwise IE = 0.

The second constraint (CY) is the lower limit for data yield:
fY > CY . A constraint violation (gY) is computed as gY =
IY ×(CY −fY) where IY = 1 if fY < CY ; otherwise IY = 0.

The third constraint (CR) is the lower limit for request
fulfillment: fR > CR. The constraint violation in request
fulfillment (gR) is computed as gR = IR × (CR − fR) where
IR = 1 if fR < CR; otherwise IR = 0.

The fourth constraint (CB) is the upper limit for bandwidth
consumption: fB < CB . A violation for this constraint (gB) is
computed as gB = IB×(fB−CB) where IB = 1 if fB > CB ;
otherwise IB = 0.

IV. BACKGROUND: EVOLUTIONARY GAME THEORY

In a conventional game, the objective of a player is to
choose a strategy that maximizes its payoff in a single game. In
contrast, evolutionary games are played repeatedly by players
randomly drawn from a population [2]. This section overviews
key elements in evolutionary games: evolutionarily stable
strategies (ESS) and replicator dynamics.

A. Evolutionarily Stable Strategies (ESS)

Suppose all players in the initial population are programmed
to play a certain (incumbent) strategy k. Then, let a small
population share of players, x ∈ (0, 1), mutate and play a
different (mutant) strategy `. When a player is drawn for a
game, the probabilities that its opponent plays k and ` are
1− x and x, respectively. Thus, the expected payoffs for the
player to play k and ` are denoted as U(k, x`+ (1−x)k) and
U(`, x`+ (1− x)k), respectively.
Definition 1. A strategy k is said to be evolutionarily stable
if, for every strategy ` 6= k, a certain x̄ ∈ (0, 1) exists, such
that the inequality

U(k, x`+ (1− x)k) > U(`, x`+ (1− x)k)

holds for all x ∈ (0, x̄).

If the payoff function is linear, Equation 5 derives:

(1− x)U(k, k) + xU(k, `) > (1− x)U(`, k) + xU(`, `)

If x is close to zero, Equation 5 derives either

U(k, k) > U(`, k) or U(k, k) = U(`, k) and U(k, `) > U(`, `)

This indicates that a player associated with the strategy k
gains a higher payoff than the ones associated with the other
strategies. Therefore, no players can benefit by changing their
strategies from k to the others. This means that an ESS is
a solution on a Nash equilibrium. An ESS is a strategy that
cannot be invaded by any alternative (mutant) strategies that
have lower population shares.
B. Replicator Dynamics

The replicator dynamics describes how population shares
associated with different strategies evolve over time. Let
λk(t) ≥ 0 be the number of players who play the strategy
k ∈ K, where K is the set of available strategies. The
total population of players is given by λ(t) =

∑ |K|
k=1λk(t).

Let xk(t) = λk(t)/λ(t) be the population share of players
who play k at time t. The population state is defined by
X(t) = [x1(t), · · · , xk(t), · · · , xK(t)]. Given X , the expected
payoff of playing k is denoted by U(k,X). The population’s
average payoff, which is same as the payoff of a player drawn
randomly from the population, is denoted by U(X,X) =∑ |K|

k=1xk ·U(k,X). In the replicator dynamics, the dynamics
of the population share xk is described as follows. ẋk is the
time derivative of xk.

ẋk = xk · [U(k,X)− U(X,X)] (5)

This equation states that players increase (or decrease) their
population shares when their payoffs are higher (or lower) than
the population’s average payoff.
Theorem 1. If a strategy k is strictly dominated, then
xk(t)t→∞ → 0.

A strategy is said to be strictly dominant if its payoff is
strictly higher than any opponents. As its population share
grows, it dominates the population over time. Conversely,
a strategy is said to be strictly dominated if its payoff is
lower than that of a strictly dominant strategy. Thus, strictly
dominated strategies disappear in the population over time.

There is a close connection between Nash equilibria and the
steady states in the replicator dynamics, in which the popula-
tion shares do not change over time. Since no players change
their strategies on Nash equilibria, every Nash equilibrium
is a steady state in the replicator dynamics. As described in
Section IV-A, an ESS is a solution on a Nash equilibrium.
Thus, an ESS is a solution at a steady state in the replicator
dynamics. In other words, an ESS is the strictly dominant
strategy in the population on a steady state.

BitC maintains a population of configuration strategies for
each BSN. In each population, strategies are randomly drawn
to play games repeatedly until the population state reaches a
steady state. Then, BitC identifies a strictly dominant strategy
in the population and configures a BSN based on the strategy
as an ESS.

V. BODY-IN-THE-CLOUD

BitC maintains N populations, {P1,P2, ...,PN}, for N
BSNs and performs games among strategies in each popu-
lation. Each strategy s(bi) specifies a particular configuration
for a BSN bi using four types of parameters: sensing intervals
and sampling rates for sensors (pij and qij) as well as data
transmission intervals for sink and sensor nodes (omi and oij).

s(bi) =
⋃

j∈1..M
(omi

, oij , pij , qij) 1 < i < N (6)

Algorithm 1 shows how BitC seeks an evolutionarily stable
configuration strategy for each BSN through evolutionary
games. In the 0-th generation, strategies are randomly gen-
erated for each of N populations {P1,P2, ...,PN} (Line 2).
Those strategies may or may not be feasible. Note that a
strategy is said to be feasible if it violates none of four
constraints described in Section III.

In each generation (g), a series of games are carried out on
every population (Lines 4 to 27). A single game randomly
chooses a pair of strategies (s1 and s2) and distinguishes
them to the winner and the loser with respect to performance
objectives described in Section III (Lines 7 to 9). The winner
is replicated to increase its population share and mutated with
polynomial mutation (Lines 10 to 18) [4]. Mutation randomly
chooses a parameter (or parameters) in a given strategy with a
certain mutation rate Pm and alters its/their value(s) at random
(Lines 12 to 14). Then the loser of the game is replaced by
the winner’s replica (Line 17). Once all strategies play games
in the population, BitC identifies a feasible strategy whose
population share (xs) is the highest and determines it as a
dominant strategy (di) (Lines 20 to 24). In the end, BitC uses
the dominant strategy to adjust the configuration parameters
for a BSN in question (Line 25).

A game is carried out based on the superior-inferior rela-
tionship between given two strategies and their feasibility (c.f.
performGame() in Algorithm 1). If a feasible strategy and
an infeasible strategy participate in a game, the feasible one
always wins over its opponent. If both strategies are feasible,
they are compared with their hypervolume value.

Hypervolume (HV) metric [5] measures the volume that a
given strategy s dominates in the objective space:

HV (s) = Λ
(⋃
{x′|s � x′ � xr}

)
(7)

Λ denotes the Lebesgue measure. xr is the reference point
placed in the objective space. A higher hypervolume means
that a strategy is more optimal. Given two strategies, the one
with a higher hypervolume value wins a game. If both have
the same hypervolume value, the winner is randomly selected.

If both strategies are infeasible in a game, they are compared
based on their constraint violation. An infeasible strategy s1
wins a game over another infeasible strategy s2 if both of the
following conditions hold:

• s1’s constraint violation is lower than, or equal to, s2’s
in all constraints.

• s1’s constraint violation is lower than s2’s in at least one
constraints.

Algorithm 1 Evolutionary Process in BitC
1: g = 0
2: Randomly generate the initial N populations for N BSNs: P =
{P1,P2, ...,PN}

3: while g < Gmax do
4: for each population Pi randomly selected from P do
5: P ′i ← ∅
6: for j = 1 to |Pi|/2 do
7: s1 ← randomlySelect(Pi)
8: s2 ← randomlySelect(Pi)
9: {winner, loser} ← performGame(s1, s2)

10: replica ← replicate(winner)
11: for each parameter v in replica do
12: if random() ≤ Pm then
13: replica ← mutate(replica, v)
14: end if
15: end for
16: Pi \ {s1, s2}
17: P ′i ∪ {winner, replica}
18: end for
19: Pi ← P ′i
20: di ← argmaxs∈Pi

xs
21: while di is infeasible do
22: Pi \ {di}
23: di ← argmaxs∈Pi

xs
24: end while
25: Use di to adjust the parameters for a BSN in question.
26: end for
27: g = g + 1

28: end while

VI. STABILITY ANALYSIS

This section analyzes BitC’s stability (i.e., reachability to at
least one of Nash equilibrium) by proving the state of each
population converges to an evolutionarily stable equillibrium.
The proof consists of three steps: (1) designing a set of differ-
ential equations that describe the dynamics of the population
state, (2) proving an strategy selection process has equilibria,
and (3) proving the the equilibria are asymptotically (or
evolutionarily) stable. The proof uses the following symbols:

• S denotes the set of available strategies. S∗ denotes a set
of strategies that appear in the population.

• X(t) = {x1(t), x2(t), · · · , x|S∗|(t)} denotes a population
state at time t where xs(t) is the population share of a
strategy s ∈ S.

∑
s∈S∗(xs) = 1.

• Fs denotes the fitness of a strategy s. It is a relative value
that is determined in a game against an opponent based on
the dominance relationship between them (Algorithm ??).
The winner of a game earns a higher fitness than the loser.

• psk = xk·φ(Fs−Fk) denotes the probability that a strategy
s is replicated by winning a game against another strategy
k. φ(Fs − Fk) is the probability that the fitness of s is
higher than that of k.

The dynamics of the population share of s is described as:
ẋs =

∑
k∈S∗,k 6=s

{xspsk − xkp
k
s}

= xs
∑

k∈S∗,k 6=s

xk{φ(Fs − Fk)− φ(Fk − Fs)} (8)

Note that if s is strictly dominated, xs(t)t→∞ → 0.

Theorem 2. The state of a population converges to an
equilibrium.

Proof. It is true that different strategies have different fitness
values. In other words, only one strategy has the highest fitness
among others. Given Theorem 1, assuming that F1 > F2 >
· · · > F|S∗|, the population state converges to an equilibrium:
X(t)t→∞ = {x1(t), x2(t), · · · , x|S∗|(t)}t→∞
= {1, 0, · · · , 0}.

Theorem 3. The equilibrium found in Theorem 2 is asymp-
totically stable.

Proof. At the equilibrium X = {1, 0, · · · , 0}, a set of dif-
ferential equations can be downsized by substituting x1 =
1− x2 − · · · − x|S∗|

żs = zs[cs1(1− zs) +
|s∗|∑

i=2,i 6=s

zi · csi], s, k = 2, ..., |S∗| (9)

where csk ≡ φ(Fs − Fk) − φ(Fk − Fs) and Z(t) =
{z2(t), z3(t), · · · , z|S∗|(t)} denotes the corresponding down-
sized population state. Given Theorem 1, Zt→∞ = Zeq =
{0, 0, · · · , 0} of (|S∗| − 1)-dimension.

If all Eigenvalues of Jaccobian matrix of Z(t) has negative
real parts, Zeq is asymptotically stable. The Jaccobian matrix
J’s elements are described as follows where s, k = 2, ..., |S∗|.

Jsk =

[
∂żs

∂zk

]
|Z=Zeq

=

∂zs[cs1(1− zs) +∑|S∗|
i=2,i 6=s zi · csi]

∂zk


|Z=Zeq

(10)

Therefore, J is given as follows, where c21, c31, · · · , c|S∗|1
are J’s Eigenvalues.

J =


c21 0 · · · 0
0 c31 · · · 0
...

...
. . .

...
0 0 · · · c|S∗|1

 (11)

cs1 = −φ(F1 − Fs) < 0 for all s; therefore, Zeq =
{0, 0, · · · , 0} is asymptotically stable.

VII. SIMULATION EVALUATION

This section evaluates BitC through simulations and studies
how BitC adapts BSN configurations to given operational con-
ditions (e.g., data request patterns placed by cloud applications
and memory space availability in sink and sensor nodes).

Simulations are configured with the parameters shown in
Table I. Data requests are uniformly distributed over virtual
sensors. A time window is randomly set for each request to
a sensor. Mutation rate is set to 1/V where V is the number
of parameters in a strategy. The following four constraints are
used: CE = ∞, CY = 1900, CR = 97, CB = 10. Every
simulation result is the average with 10 independent simulation
runs. BitC is evaluated in comparison with NSGA-III, which
is one of the state-of-the-art EMOAs [3]. BitC and NSGA-III
use the same parameter settings shown in Table I. All other
NSGA-III settings are borrowed from [3].

TABLE I: Simulation Settings
Parameter Value

Duration of a simulation (W) 10,800 secs (3 hrs)
Number of simulation runs 10

Number of BSNs (N) 100
Number of sensor nodes in a BSN (M) 4

Memory space in a sensor node 2 GB
Memory space in a sink node 16 GB

Total number of data requests from cloud apps 1,000
Size of a data request (dr and d′r) 100 bytes

Size of an error message (er) 250 bytes
Energy consumption for a single bit of data (et) 0.001 Watt

Blood pressure request time window [0, 1000 secs]
Acelerometer request time window [0, 1800 secs]

ECG request time window [0, 600 secs]
Number of generations (Gmax) 100

Mutation rate (Pm) 1/V

Table II examines how a mutation-related parameter, called
distribution index (ηm in [4]), impacts the performance of
BitC. This parameter controls how likely a mutated strat-
egy is similar to its original. (A higher distribution index
makes a mutant more similar to its original.) In Table II,
the performance of BitC is evaluated with the hypervolume
measure that a set of dominant strategies yield in the 100th
generation. The hypervolume metric indicates the union of
the volumes that a given set of solutions dominates in the
objective space [5]. A higher hypervolume means that a set
of solutions is more optimal. As shown in Table II, BitC
yields the best performance with the distribution index value
of 30. (Each each population (|Pi| in Algorithm 1) contains
100 strategies.) Thus, this parameter setting is used in all
successive simulations.

TABLE II: Impacts of Distribution Index Values on Hypervolume
Dist. Index Hypervolume Dist. Index Hypervolume

20 0.922 25 0.931
30 0.949 35 0.942
40 0.934

Table III examines how the size of each population (|Pi| in
Algorithm 1) impacts the hypervolume performance of BitC.
The highest hypervolume result is obtained with the population

size of 100; however, it is close enough to the result with the
population size of 50. Therefore, the population size is set
to 50 in all successive simulations in favor of reducing the
execution time of BitC’s optimization process.

TABLE III: Impacts of Population Size on Hypervolume (HV)
Population Size Hypervolume
20 0.900
50 0.928
100 0.929

Table IV compares BitC-HV and NSGA-III based on three
metrics: objective values, hypervolume and Euclidean dis-
tance. For NSGA-III, objective values are measured with an
individual that minimizes the Euclidean distance to the BitC
solution. Hypervolume is measured with the NSGA-III indi-
vidual. Distance is computed with each objective normalized
to [0, 1]. (The value range of a distance is [0, 2].)

As shown in Table IV, BitC is non-dominated (or tie) with
NSGA-III with respect to four objective values. BitC outper-
forms NSGA-III in three objectives (request fulfillment, band-
width consumption and energy consumption) while NSGA-III
outperforms BitC in data yield. BitC yields a slightly higher
(1.5% higher) hypervolume value than NSGA-III. Table IV
examines the distances in the normalized objective space from
the Utopian point, (0, 0, 0, 0), to the BitC and NSGA-III
solutions. Euclidean and Manhattan distance metrics are used.
In both metrics, a shorter distance means that a given solution
is closer to the Utopian point (i.e., more optimal). BitC is
closer to the Utopian point than NSGA-III by 49.48% and
57.58% in Manhattan and Euclidean distances, respectively.
Table IV demonstrates that BitC-HV outperforms NSGA-III.

TABLE IV: Comparison of BitC and NSGA-III
Objective BitC-HV NSGA-III

Request Fulfillment: fR (%) 98.5 98
Bandwidth: fB (Kbps) 3.12 9.99

Energy consumption: fE (Watts) 56.25 172.36
Data Yield: fY 8025 46252

Hypervolume (HV) 0.948 0.924
Euclidean distance to the Utopian point 0.271 0.639
Manhattan distance to the Utopian point 0.538 1.065

of generations to reach HV=0.924 19 133
of generations to reach HV=0.948 96 —

The bottom two rows of Table IV show BitC’s and NSGA-
III’s convergence speed. NSGA-III requires 133 generations
to reach the HV value of 0.924, which is the highest HV that
NSGA-III yields. In contrast, BitC spends only 19 generations
to reach the HV value. It maintains a 7x speedup against
NSGA-III in convergence speed.

Table V shows the variance of objective values that BitC-
HV and NSGA-III yield at the last generation in 10 different
simulation runs. A lower variance means higher stability (or
higher similarity) in objective value results (i.e., lower oscilla-
tions in objective value results) among different simulation
runs. BitC-HV maintains significantly higher stability than
NSGA-III in all objectives. On average, BitC’s stability is
41.75% higher than NSGA-III’s. This result exhibits BitC’s

stability property (i.e. reachability to at least one equillibira),
which NSGA-III does not have.

TABLE V: Stability of Objective Values in BitC and NSGA-III
Objectives BitC-HV NSGA-III Diff (%)

Request Fulfillment: fR 0.04 0.05 20%
Bandwidth: fB 0.02 0.11 81.81%
Energy Consumption: fE 0.017 0.05 66%
Data Yield: fY 0.01 0.01 0%
Average Difference (%) – – 41.75%

Table VI compares the execution time for BitC and NSGA-
III to run a single generation and an entire simulation (i.e.,
100 generations). It illustrates that BitC’s execution time is
12.4% shorter than NSGA-III’s.

TABLE VI: Execution time of BitC and NSGA-III
BitC NSGA-III

Per-generation execution time 10.61 sec 12.11sec
Total execution time 2.95 hrs 3.37 hrs

In summary, Tables IV to VI demonstrate that BitC outper-
forms NSGA-III in optimality, stability and efficiency.

Fig. 2: History-based Optimization under Dynamic Changes in
Operational Conditions

Fig. 2 shows how BitC reconfigures BSNs when operational
conditions change dynamically. Upon a dynamic change, BitC
reruns its optimization process by mutating the dominant
strategies obtained in the previous run through polynomial
mutation (c.f. Lines 11 to 15 in Algorithm 1) and supplying
mutants to the initial population for the current run. Fig. 2
shows how the number of those mutants impacts the HV
performance when the number of patients and the total number
of data requests increases by 10%. BitC runs 10 times; it
executes 1,000 generations in total. “100% history-based”
means all the initial strategies are mutants produced from
the dominant strategies obtained in the previous run. “50%
history-based” means that a half of them are mutants and the
other half is randomly generated. “0% history-based” means
all are randomly generated. In the 50% case, BitC often
converges faster and reaches a higher HV compared to the
other two cases.

Table VII depicts the average convergence speed and opti-
mality in 10 consecutive simulation runs. In 50% case, BitC
requires 10 generations to reach the HV value of 0.91 while

it requires 43 generations in the 0% case. This “50% history-
based” optimization gains 4.3x speedup and 1.4% higher HV
compared to the case where no history is used. Thus, this
parameter setting is used in successive simulations.

TABLE VII: Impacts of History-based Optimization on Convergence
Speed and Optimality

History-level
0% 50% 100%

of generations to reach HV=0.91 43 10 29
of generations to reach HV=0.92 77 21 56
of generations to reach HV=0.93 - 60 81
Hypervolume (HV) value 0.920 0.933 0.925

Fig. 3 illustrates how BitC’s optimization results change
if it introduces a dynamic termination condition. Unlike a
static termination condition used in the previous simulations,
which stops an optimization process when the number of
generations reaches 100, the dynamic termination condition
stops an optimization process when HV does not increase
by 0.1% in the past 10 generations. Fig. 3a shows the
impacts of dynamic termination on HV performance under
no changes in operational conditions. Fig. 3b and Fig. 3c
show the impacts of dynamic termination under dynamic
10% and 50% changes operational conditions, respectively. In
each change, the number of patients and the total number of
data requests increase or decrease at random. As illustrated
in Table VIII, dynamic termination gains 1.8x speedup in
convergence speed while sacrificing 0.3% in HV when no
operational conditions change. Under 10% and 50% changes
in operational conditions, dynamic termination gains 1.7x
and 1.8x speedup in convergence speed, respectively, while
sacrificing 0.1% and 0.3% in HV. Fig. 3 and Table VIII
demonstrate that dynamic optimization termination improves
convergence speed and makes virtually no sacrifices on HV
performance.

TABLE VIII: Impacts of Dynamic Optimization Termination on
Convergence Speed and Optimality

of generations HV

No changes Static termination 100 0.933
Dynamic termination 56 0.930

±10% changes Static termination 100 0.927
Dynamic termination 59 0.928

±50% changes Static termination 100 0.929
Dynamic termination 56 0.923

VIII. RELATED WORK

Various architectures and research tools have been proposed
for cloud-integrated sensor networks including BSNs [6]–[19].
Many of them, [6]–[14], assume three-tier architectures sim-
ilar to BitC and investigate publish/subscribe communication
between the edge layer to the cloud layer. Their focus is
placed on push communication. In contrast, BitC investigates
push-pull hybrid communication between the sensor layer
and the cloud layer through the edge layer. Yuriyama et
al. [15], Rollin et al. [16] and Chung et al. [18] propose
a two-tier architecture that consists of the sensor and cloud

(a) No Changes (b) ±10% Changes (c) ±50% Changes
Fig. 3: Impacts of a Dynamic Optimization Termination on Hypervolume Performance

layers. The architectures proposed by Yuriyama et al. and
Fortino et al. [19] are similar to BitC in that they leverage the
notion of virtual sensors. However, they do not consider push-
pull (nor publish/subscribe) communication. All the above-
mentioned relevant work do not consider adaptive/stable con-
figurations of sensor networks as BitC does [6]–[19].

Push-pull hybrid communication has been studied in sensor
networks [20]–[23]. However, few efforts exist to study it
between the edge and cloud layers in the context of cloud-
integrated sensor networks. Unlike those relevant work, this
paper formulates a sensor network configuration problem with
cloud-specific objectives as well as the ones in sensor networks
and seeks adaptive/stable solutions for the problem.

IX. CONCLUSION

This paper considers a layered push-pull hybrid commu-
nication for cloud-integrated BSNs and formulates a BSN
configuration problem to seek adaptive and stable solutions.
An evolutionary game theoretic algorithm is used to approach
the problem. A theoretical analysis proves that the proposed
algorithm allows each BSN to operate at an equilibrium
by using an evolutionarily stable configuration strategy in a
deterministic (i.e., stable) manner. Simulation results verify
this theoretical analysis; BSNs seek equilibria to perform
adaptive and evolutionarily stable configuration strategies.

REFERENCES

[1] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms.
John Wiley & Sons Inc, 2001.

[2] J. W. Weibull, Evolutionary Game Theory. MIT Press, 1996.
[3] K. Deb and H. Jain, “An evolutionary many-objective optimization

algorithm using reference-point-based nondominated sorting approach,
part I: Solving problems with box constraints,” IEEE Trans. Evol.
Computat., vol. 18, no. 4, 2014.

[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II,” IEEE Trans Evol. Computat.,
vol. 6, no. 2, 2002.

[5] E. Zitzler and L. Thiele, “Multiobjective optimization using evolutionary
algorithms: A comparative study,” in Proc. Int’l Conf. on Parallel
Problem Solving from Nature, 1998.

[6] M. M. Hassan, B. Song, and E.-N. Huh, “A framework of sensor-cloud
integration opportunities and challenges,” in Proc. the 3rd ACM Int’l
Conference on Ubiquitous Info. Mgt. and Comm., 2009.

[7] K. Aberer, M. Hauswirth, and A. Salehi, “Infrastructure for data pro-
cessing in large-scale interconnected sensor networks,” in Proc. the 8th
IEEE Int’l Conference on Mobile Data Management, 2007.

[8] M. Gaynor, M. Welsh, S. Moulton, A. Rowan, E. LaCombe, and
J. Wynne, “Integrating wireless sensor networks with the grid,” IEEE
Internet Computing, July/August 2004.

[9] P. Boonma and J. Suzuki, “TinyDDS: An interoperable and config-
urable publish/subscribe middleware for wireless sensor networks,” in
Principles and Apps. of Dist. Event-Based Systems, A. Hinze and
A. Buchmann, Eds. IGI Global, 2010, ch. 9.

[10] N. Suryadevara, M. T. Quazi, and S. Mukhopadhyay, “Intelligent sensing
systems for measuring wellness indices of the daily activities for the
elderly,” in Proc. Int’l Conf. on Intelligent Environments, 2012.

[11] A. Ambrose, M. Cardei, and I. Cardei, “Patient-centric hurricane evacu-
ation management system,” in Proc. IEEE Int’l Performance Computing
and Communications Conference, 2010.

[12] M. Boulmalf, A. Belgana, T. Sadiki, S. Hussein, T. Aouam, and
H. Harroud, “A lightweight middleware for an e-health wsn based system
using android technology,” in Proc. Int’l Conf. on Multimedia Comp. and
Sys., 2012.

[13] K. E. U. Ahmed and M. A. Gregory, “Integrating wireless sensor
networks with cloud computing,” in Proc. Int’l Conf. on Mobile Ad-
hoc and Sensor Networks, 2011.

[14] P. Zhang, Z. Yan, and H. Sun, “A novel architecture based on cloud com-
puting for wireless sensor network,” in Proc. Int’l Conf. on Computer
Science and Electronics Engineering, 2013.

[15] M. Yuriyama and T. Kushida, “Sensor-cloud infrastructure - physical
sensor management with virtualized sensors on cloud computing,” in
Proc. the 13th Int’l Conf. on Network-Based Info. Sys., 2010.

[16] C. O. Rolim, F. L. Koch, C. B. Westphall, J. Werner, A. Fracalossi, and
G. S. Salvador, “A cloud computing solution for patient’s data collection
in health care institutions,” in Proc. the 2nd IARIA Int’l Conference on
eHealth, Telemedicine and Social Medicine, 2010.

[17] N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao, “Tiny web
services: design and implementation of interoperable and evolvable
sensor networks,” in Proc. the 6th ACM Int’l Conference on Embedded
Network Sensor Systems, 2008.

[18] W.-Y. Chung, P.-S. Yu, and C.-J. Huang, “Cloud computing system based
on wireless sensor network,” in Proc. Federated Conf. on Comp. Sci.
and Info. Sys., 2013.

[19] G. Fortino, D. Parisi, V. Pirrone, and G. D. Fatta, “BodyCloud: A SaaS
approach for community body sensor networks,” Future Generation
Computer Systems, vol. 35, no. 6, pp. 62–79, 2014.

[20] H. Wada, P. Boonma, and J. Suzuki, “Chronus: A spatiotemporal
macroprogramming language for autonomic wireless sensor networks,”
in Autonomic Network Mgt. Principles: From Concepts to Applications,
N. Agoulmine, Ed. Elsevier, 2010, ch. 8.

[21] P. Boonma, Q. Han, and J. Suzuki, “Leveraging biologically-inspired
mobile agents supporting composite needs of reliability and timeliness
in sensor applications,” in Proc. IEEE Int’l Conf. on Frontiers in the
Convergence of Biosci. and Info. Tech., 2007.

[22] S. Kapadia and B. Krishnamachari, “Comparative analysis of push-pull
query strategies for wireless sensor networks,” in Proc. International
Conference on Distributed Computing in Sensor Systems, 2006.

[23] M. Li, D. Ganesan, and P. Shenoy, “PRESTO: Feedback-driven data
management in sensor networks,” in Proc. USENIX Symposium on
Networked Systems Design and Implementation, 2006.

