An Evolutionary Game Theoretic Approach for
Configuring Cloud-integrated Body Sensor Networks

Yi Cheng-Ren*, Junichi Suzuki*, Dung H. Phan*, Shingo Omura* and Ryuichi Hosoya?
* University of Massachusetts, Boston
Boston, MA 02125-3393, USA
Email: {yiren001,jxs,phdung} @cs.umb.edu
toais International, Inc.
San Mateo, CA 94402, USA
Email: {omura,hosoya} @ogis-international.com

Abstract—This paper considers a cloud-integrated multi-tier
architecture for body sensor networks (BSNs), called Body-in-
the-Cloud (BitC), and studies an evolutionary game theoretic ap-
proach to configure BSNs in an adaptive and stable manner. BitC
allows BSNs to adapt their configurations (i.e., sensing intervals
and sampling rates for sensors as well as data transmission inter-
vals for sensor and sink nodes) to operational conditions (e.g., data
request patterns) with respect to multiple conflicting objectives
such as resource consumption and data yield. Moreover, BitC
theoretically guarantees that each BSN performs an evolutionarily
stable configuration strategy, which is an equilibrium solution
under given operational conditions. Simulation results verify this
theoretical analysis; BSNs seek equilibria to perform adaptive
and evolutionarily stable configuration strategies.

I. INTRODUCTION

Home healthcare plays an important role in many health-
care systems. For example, it is the most rapidly growing
segment of the U.S. healthcare system since 1990s for both
acute and chronic cares [1]. In 2012, it recorded the highest
spending growth (5.1%) among all healthcare segments while
the total healthcare spending increased 3.7% [2].

In order to address the quality of life and economic issues
in home healthcare, various research efforts have been made
for the development of body sensor networks (BSNs), each
of which is a per-patient wireless network of on-body and/or
in-body sensors for, for example, heart rate, blood pressure,
oxygen saturation, body temperature, respiratory rate, blood
coagulation and fall detection [3], [4]. BSNs can be used to
remotely and continuously perform physiological and activ-
ity monitoring for homebound patients. This paper envisions
cloud-integrated BSNs, which virtualize on/in-body sensors
with clouds for home healthcare by taking advantage of cloud
computing features such as pay-per-use billing, scalability in
data storage and processing and availability through multi-
regional application deployment.

This paper proposes an architecture for cloud-integrated
BSNs, called Body-in-the-Cloud (BitC), which consists of
the sensor, edge and cloud layers. The sensor layer is a
collection of sensors and sensor nodes in BSNs. Each BSN
operates sensor nodes, each of which is equipped with sensors
and wirelessly connected to a dedicated per-patient device
or a patient’s computer (e.g., smartphone or tablet machine)
that serves as a sink node. The edge layer consists of sink
nodes, which collect sensor data from sensor nodes in BSNs.

The cloud layer consists of cloud environments that host
virtual sensors, which are virtualized counterparts (or software
counterparts) of physical sensors in BSNs. Virtual sensors
collect sensor data from sink nodes in the edge layer and store
those data for future use. The cloud layer also hosts various
applications that obtain sensor data from virtual sensors and
aid medical staff (e.g., clinicians, hospital/visiting nurses and
other caregivers) to effectively share sensor data for clinical
observation and intervention.

BitC performs push-pull hybrid communication between
its three layers. Each sensor node periodically collects data
from sensors attached to it based on sensor-specific sensing
intervals and sampling rates and transmits (or pushes) those
collected data to a sink node. The sink node in turn forwards
(or pushes) incoming sensor data periodically to virtual sensors
in clouds. When a virtual sensor does not have sensor data
that a cloud application requires, it obtains (or pulls) that data
from a sink node or a sensor node. This push-pull commu-
nication is intended to make as much sensor data as possible
readily available for cloud applications by taking advantage
of push communication while allowing virtual sensors to pull
any missing or extra data anytime in an on-demand manner.
For example, when an anomaly is found in pushed sensor
data, medical staff may pull extra data in a higher temporal
resolution to better understand a patient’s medical condition.
Given a sufficient amount of data, they may perform clinical
intervention, order clinical cares, dispatch ambulances or notify
family members of patients.

This paper focuses on configuring BSNs in BitC by tuning
sensing intervals and sampling rates for sensors as well as data
transmission intervals for sensor and sink nodes, and studies
two properties in configuring BSNs:

e Adaptability: Adjusting BSN configurations according
to operational conditions (e.g., data request patterns
placed by cloud applications and availability of re-
sources such as bandwidth and memory) with respect
to performance objectives such as bandwidth con-
sumption, energy consumption and data yield.

e Stability: Minimizing oscillations (non-deterministic
inconsistencies) in making adaptation decisions.
BitC leverages an evolutionary game theoretic approach to

configure BSNs. Each BSN maintains a set (or a population)
of configuration strategies. BitC theoretically guarantees that,

through a series of evolutionary games between BSN config-
uration strategies, the population state (i.e., the distribution of
strategies) converges to an evolutionarily stable equilibrium
regardless of the initial state. (A dominant strategy in the
evolutionarily stable population state is called an evolutionarily
stable strategy.) In this state, no other strategies except an evo-
lutionarily stable strategy can dominate the population. Given
this theoretical property, BitC allows each BSN to operate at
equilibria by using an evolutionarily stable strategy to config-
ure BSNs in a deterministic (i.e., stable) manner. Simulation
results verify this theoretical analysis; BSNs seek equilibria to
perform evolutionarily stable deployment strategies and adapt
their configurations to given operational conditions.

Cloud
App | App App e -0

applications

Cloud
£ '[\l layer
E Virtual Y
sensors
F 3
Sink nodes L Edge
Push Pull layer

Sensor Ly }

\\ -
Push Pull Sensor
e layer
Sensor
Per-patient Per-patient neds
BSN BSN Sensor

Fig. 1: A Push-Pull Hybrid Communication in BitC

II. AN ARCHITECTURAL OVERVIEW OF BITC
BitC consists of the following three layers (Fig. 1).

Sensor Layer: operates one or more BSNs on a per-patient
basis (Fig. 1). Each BSN contains one or more sensor nodes in
a certain topology. This paper assumes the star topology. Each
sensor node is equipped with different types of sensors. It is
assumed to be battery-operated. (It has limited energy supply.)
It maintains a sensing interval and a sampling rate for each
sensor attached to it. Upon a sensor reading, it stores collected
data in its own memory space. Given a data transmission
interval, it periodically flushes all data stored in its memory
space and transmits the data to a sink node.

Edge Layer: consists of sink nodes, each of which partic-
ipates in a certain BSN and receives sensor data periodically
from sensor nodes in the BSN. A sink node stores incoming
sensor data in its memory space and periodically flushes stored
data to transmit (or push) them to the cloud layer. It maintains
the mappings between physical and virtual sensors. In other
words, it knows the origins and destinations of sensor data.
Different sink nodes have different data transmission intervals.
A sink node’s data transmission interval can be different from
the ones of sensor nodes in the same BSN. Sink nodes are
assumed to have limited energy supplies through batteries.

In addition to pushing sensor data to a virtual sensor, each
sink node receives a pull request from a virtual sensor when

the virtual sensor does not have data that a cloud application(s)
requires. If the sink node has the requested data in its memory,
it returns that data. Otherwise, it issues another pull request to
a sensor node that is responsible for the requested data. Upon
receiving a pull request, the sensor node returns the requested
data if it has the data in its memory. Otherwise, it returns an
error message to a could application.

Cloud Layer: operates on one or more clouds to host
applications that allow medical staff to place continuous sensor
data requests on virtual sensors in order to monitor patients. If
a virtual sensor has data that an application requests, it returns
that data. Otherwise, it issues a pull request to a sink node.
While push communication carries out a one-way upstream
travel of sensor data, pull communication incurs a round trip
for requesting sensor data and receiving that data.

III. BSN CONFIGURATION PROBLEM IN BITC

This section describes a BSN configuration problem for
which BitC seeks equilibrium solutions. Each BSN config-
uration consists of four types of parameters (i.e., decision
variables): sensing intervals and sampling rates for sensors as
well as data transmission intervals for sensor and sink nodes.
The problem is stated with the following symbols.

o B =/{by,bs,...,b;,...,bx} denotes the set of N BSNs,

each of which operates for a patient.

e Each BSN b; consists of a sink node (denoted by m;)
and M sensor nodes: b; = {hi1, hiz, ..., Rij, ..., hins
Each sensor node h;; has L sensors: h;; =
{8ij1, Sij2s s Sijks - SijL }- Oijk 1S the data transmis-
sion interval for h;; to transmit sensor data collected
from s;j1. pijr and g;j1, are the sensing interval and
sampling rate for s;;;. Sampling rate is defined as
the number of sensor data samples collected in a unit
time. Each sensor node stores collected sensor data in
its memory space until its next push transmission. If
the memory becomes full, it performs FIFO (First-In-
First-Out) data replacement. In a push transmission, it
flushes and sends out all data stored in its memory.

® 0., denotes the data transmission interval for m; to
forward (or push) sensor data incoming from sensor
nodes in b; In between two push transmissions, m;
stores sensor data from b; in its memory. It performs
FIFO data replacement if the memory becomes full.
In a push transmission, it flushes and sends out all
data stored in the memory.

o Ry = {Tijkla T2y ooy Tijkrs oo TijkIRijk\} denotes
the set of sensor data requests that cloud applications
issue to the virtual counterpart of s;j; (s;;;) during
the time period of W in the past. Each request 7z,
is characterized by its time stamp (Z;;,-) and time
window (wj;xr). It retrieves all sensor data available
in the time interval [¢; 5, — Wijkr, tijr]. If s’ijk has at
least one data in [t;;kr — Wijkr, tijkr], it returns those
data; otherwise, it issues a pull request to m;.

. R?}k € R;j;1. denotes the set of sensor data requests
for which a virtual sensor s};, has no data. |R[};|
indicates the number of pull requests that s, jk 1ssues
to m;. In other words, R;j \ R;’;k is the set of sensor
data requests that s/, fulfills regarding s;;.

° Rfjk S R?}k € R;ji denotes the set of sensor data
requests for which m; has no data. |R;;;| indicates

the number of pull requests that m; issues to h;; for
collecting data from s;;;. R[%; \ Rf;; is the set of
sensor data requests that m; fulfills regarding s;;y.
This paper considers four performance objectives: band-
width consumption between the edge and cloud layers (fp),
energy consumption of sensor and sink nodes (fg), request
fulfillment for cloud applications (fr) and data yield for cloud
applications (fp). The first two objectives are to be minimized
while the others are to be maximized.

The bandwidth consumption objective (fp) is defined as
the total amount of data transmitted per a unit time between
the edge and cloud layers. This objective impacts the payment
for bandwidth consumption based on a cloud operator’s pay-
per-use billing scheme. It also impacts the lifetime of sink
nodes. fp is computed as follows.

N M
Y S e <)
i=1 j=1 k=1
N M L Bl

+ % D3NN (bigkr X dige +dr) (1)

i=1j=1k=1 r=1

The first and second terms indicate the bandwidth con-
sumption by one-way push communication from the edge
layer to the cloud layer and two-way pull communication
between the cloud and edge layers, respectively. c;;, denotes
the number of sensor data that s;;;, generates and sink nodes
in turn push to the cloud layer during W. d; ;i denotes the size
of each sensor data (in bits) that s;;;, generates. It is currently
computed as: g;j X 16 bits/sample. ¢;;x, denotes the number
of sensor data that a pull request r € R, can collect from
sink nodes (¢ijur = |R7, \ Rjj;]. dy is the size of a pull
request transmitted from the cloud layer to the edge layer. It
is constant for all sensor nodes and sensors.

The energy consumption objective (fg) is defined as the
total amount of energy that sensor and sink nodes consume for
data transmissions during W. It impacts the lifetime of sensor
and sink nodes. It is computed as follows.

N M

fE—ZZZ

i=1 j=1 k=1

X et X d”k)
Oijk

N M L IRl

eSS)

i=1 j=1 k=1 r=1
N M
ijk)

+ZZZ(

1=1 j=1 k=1

i=1 j=1 k=1 r=1

The first and second terms indicate the energy consumption
by one-way push communication from the sensor layer to the
edge layer and two-way pull communication between the edge
layer and the sensor layer, respectively. e; denotes the amount
of energy (in Watts) that a single bit of data consumes to travel
in between a sensor node and a sink node. 7);;, is the number
of sensor data that a pull request 7 € R}, can collect from
sensor nodes. d.. denotes the size of a pull request from the
edge layer to the sensor layer. It is constant for all sensor
nodes and sensors. The third and fourth terms indicate the

energy consumption by push and pull communication between
the edge and cloud layer, respectively.

The request fulfillment objective (fr) is defined as the ratio
of the number of fulfilled requests over the total number of
requests. It is computed as follows.

R;
Zf\]:lz Zk 12‘ mle‘jk
‘ka‘

fr= x 100 3)

IR,,, = 1if a request 7 € R;j;, obtains at least one sensor
data; otherwise, Ig,;, = 0.

The data yield objective (fy) is defined as the total amount
of data that cloud applications gather for their users. This
objective impacts the informedness and situation awareness
for application users. It is computed as follows.

1k=1 r=1

IR | N M L IRl

Gigkr + DD D D Migkr + [Rigr \ Rl

i=1 j=1k=1 r=1
)

IV. BACKGROUND: EVOLUTIONARY GAME THEORY

In a conventional game, the objective of a player is to
choose a strategy that maximizes its payoff. In contrast,
evolutionary games are played repeatedly by players randomly
drawn from a population [5]. This section overviews key
elements in evolutionary games: evolutionarily stable strategies
(ESS) and replicator dynamics.

A. Evolutionarily Stable Strategies (ESS)

Suppose all players in the initial population are pro-
grammed to play a certain (incumbent) strategy k. Then, let
a small population share of players, x € (0,1), mutate and
play a different (mutant) strategy ¢. When a player is drawn
for a game, the probabilities that its opponent plays k£ and ¢
are 1 — x and =z, respectively. Thus, the expected payoffs for
the player to play k and ¢ are denoted as U (k,zf + (1 — z)k)
and U (¢, 2¢ + (1 — x)k), respectively.

Definition 1. A strategy k is said to be evolutionarily stable
if, for every strategy ¢ # k, a certain T € (0,1) exists, such
that the inequality

Uk, e+ 1 —x)k)>Ul, £+ (1—2x)k) Q)

holds for all x € (0, T).

If the payoff function is linear, Equation 5 derives:

(1 — 2)U(k, k) + 2U(k,) > (1 — 2)U(€, k) + 2U(€,£) (6)

If = is close to zero, Equation 6 derives either

Uk, k) > UL, k) or Uk, k) =

This indicates that a player associated with the strategy &
gains a higher payoff than the ones associated with the other
strategies. Therefore, no players can benefit by changing their
strategies from k to the others. This means that an ESS is
a solution on a Nash equilibrium. An ESS is a strategy that
cannot be invaded by any alternative (mutant) strategies that
have lower population shares.

U, k) and U(k,€) > U(£,0) (7)

B. Replicator Dynamics

The replicator dynamics describes how population shares
associated with different strategies evolve over time [6]. Let
Ak(t) > 0 be the number of players who play the strategy
k € K, where K is the set of available strategies. The
total population of players is given by A(¢) = > ,fgl)\k(t).
Let z(t) = Ag(t)/A(t) be the population share of players
who play k£ at time ¢. The population state is defined by
X(t) = [z1(t), - ,xk(t), -+ ,zx(t)]. Given X, the expected
payoff of playing k is denoted by U (k, X). The population’s
average payoff, which is same as the payoff of a player drawn
randomly from the population, is denoted by U(X,X) =
> ‘,fjlxk -U(k, X). In the replicator dynamics, the dynamics
of the population share zj, is described as follows. &y, is the
time derivative of xy.

T =a - UKk, X) - U(X, X)] ®)

This equation states that players increase (or decrease) their
population shares when their payoffs are higher (or lower) than
the population’s average payoff.

Theorem 1. If a strategy k is strictly dominated, then
Tk (t)t—>oo — 0.

A strategy is said to be strictly dominant if its payoff is
strictly higher than any opponents. As its population share
grows, it dominates the population over time. Conversely,
a strategy is said to be strictly dominated if its payoff is
lower than that of a strictly dominant strategy. Thus, strictly
dominated strategies disappear in the population over time.

There is a close connection between Nash equilibria and
the steady states in the replicator dynamics, in which the popu-
lation shares do not change over time. Since no players change
their strategies on Nash equilibria, every Nash equilibrium
is a steady state in the replicator dynamics. As described in
Section IV-A, an ESS is a solution on a Nash equilibrium.
Thus, an ESS is a solution at a steady state in the replicator
dynamics. In other words, an ESS is the strictly dominant
strategy in the population on a steady state.

BitC maintains a population of configuration strategies for
each BSN. In each population, strategies are randomly drawn
to play games repeatedly until the population state reaches a
steady state. Then, BitC identifies a strictly dominant strategy
in the population and configures a BSN based on the strategy
as an ESS.

V. BODY-IN-THE-CLOUD

BitC maintains N populations, {P1, P, ..., Pn}, for N
BSNs and performs games among strategies in each popu-
lation. Each strategy s(b;) specifies a particular configuration
for a BSN b; using four types of parameters: sensing intervals
and sampling rates for sensors (p;;, and g;;i) as well as data
transmission intervals for sink and sensor nodes (0, and o;;1).

S(bz) = U U (Omi70ijk7pijk,Qijk) 1<i< N (9)
jEL.M keEl..L
Algorithm 1 shows how BitC seeks an evolutionarily stable
configuration strategy for each BSN through evolutionary
games. In the 0-th generation, strategies are randomly gener-
ated for each of N populations {P1, Pa, ..., Pnx} (Line 2). In
each generation (g), a series of games are carried out on every
population (Lines 4 to 24). A single game randomly chooses

a pair of strategies (s; and s3) and distinguishes them to the
winner and the loser with respect to performance objectives
described in Section III (Lines 7 to 9). The loser disappears
in the population. The winner is replicated to increase its
population share and mutated with a certain mutation rate P,
(Lines 10 to 15). Mutation randomly chooses one of sensor
node in the winner and alters its 0;;%,pi;% and g;;; values at
random (Line 12).

Once all strategies play games in the population, BitC
identifies a feasible strategy whose population share (x) is the
highest and determines it as a dominant strategy (d;) (Lines 18
to 22). A strategy is said to be feasible if it violates none of
four constraints described in Section III. BitC configures a
BSN with parameters contained in the dominant strategy.

A strategy s; is said to dominate another strategy So
(denoted by 7 > 7) if both of the following conditions are
hold [7]:

e s1’s objective values are superior than, or equal to,

$2’s in all objectives.

e 51’s objective values are superior than sy’s in at least

one objectives.
Algorithm 1 Evolutionary Process in BitC

1: g=0
2: Randomly generate the initial N populations for N BSNs: P =
{P1,Pa,...,Pn}

3: while g < Grmqe do

4 for each population P; randomly selected from P do
5 P« 0

6: for j =1 to |P;|/2 do

7: s1 < randomlySelect(P;)

8: s2 < randomlySelect(P;)

9: winner < performGame(si, S2)

10: replica < replicate(winner)

11: if random() < P,, then

12: replica < mutate(winner)

13: end if

14: Pi \{81,82}

15: P; U {winner, replica}

16: end for

17: P« P}

18: d;i <= argmaxsep; Ts

19: while d; is infeasible do

20: Pi \ {dL}

21: di < argmazscp,Ts

22: end while

23: current patient transmits data based on d;.

24: end for
25 g=g+1
26: end while

VI. STABILITY ANALYSIS

This section analyzes BitC’s stability (i.e., reachability to
at least one of Nash equilibrium) by proving the state of
each population converges to an evolutionarily stable equi-
llibrium. The proof consists of three steps: (1) designing a
set of differential equations that describe the dynamics of the
population state, (2) proving an strategy selection process has
equilibria, and (3) proving the the equilibria are asymptotically
(or evolutionarily) stable. The proof uses the following terms
and variables.

e S denotes the set of available strategies. S* denotes a
set of strategies that appear in the population.

o X(t) = {x1(t), x2(t), -+ ,25+|(t)} denotes a popu-
lation state at time ¢ where x4(t) is the population
share a strategy s € S. > ses+(z5) = 1.

e [denotes the fitness of a strategy s. It is a relative
value that is determined in a game against an opponent
based on the dominance relationship between them
(Algorithm ??). The winner of a game earns a higher
fitness than the loser.

o p = xp - ¢(Fs — Fy) denotes the probability that
a strategy s is replicated by winning a game against
another strategy k. ¢(Fs — Fy) is the probability that
the fitness of s is higher than that of k.

The dynamics of the population share of s is described as:

g5 =y Ak — @t}
kES* k#s
= o Y we{d(Fs — F) — ¢(F — Fs)} (10)
kES* k#s

Note that if s is strictly dominated, s (t)¢— 00 — O.

Theorem 2. The state of a population converges to an equi-
librium.

Proof: 1t is true that different strategies have different
fitness values. In other words, only one strategy has the
highest fitness among others. Given Theorem 1, assuming that
Fy > Fy > -+ > Fjg+|, the population state converges to an
equilibrium: X (t); o0 = {21 (t), 22(t), - , 2|5+ (£) }1os00
={1,0,---,0}.]

Theorem 3. The equilibrium found in Theorem 2 is asymp-
totically stable.

Proof: At the equilibrium X = {1,0,---,0}, a set of
differential equations can be downsized by substituting z; =
171‘27"'71"5*‘

[s”|

Z 2 Csily, S, k=2,..
1=2,1#s

where ¢, = ¢(Fs — F) — ¢(Fx — Fy)) and Z(t) =
{22(t), 23(t), - -+ , 25+|(t)} denotes the corresponding down-
sized population state Given Theorem 1, Z; oo = Zeg =
{0,0,---,0} of (|S*| — 1)-dimension.

If all Eigenvalues of Jaccobian matrix of Z(t) has negative
real parts, Z., is asymptotically stable. The Jaccobian matrix
J’s elements are

]
aZk ‘Z:Zeq

ST an

Zs = zs[es1(1 — zs)

Jsk

_ [625[051(1_'2)+Zz 21759 Zi CS’i] (12)
6Zk
|Z=Zeq
for s,k =2,....1S"
Therefore, J is given as follows, where ca1,¢31,** ,¢|5+)1
are J’s Eigenvalues.
TR 0
0 c31 . 0
J = (13)
0 0 C\S*\l
cs1 = —¢(F1 — Fs) < 0 for all s; therefore, Z., =
{0,0,---,0} is asymptotically stable. [|

VII. SIMULATION EVALUATION

This section evaluates BitC through simulations and dis-
cusses how BitC allows BSNs to to adapt their configurations
to given operational conditions (e.g., data request patterns
placed by cloud applications and memory space availability
in sink and sensor nodes) and improve their performance.
Simulations are configured with the parameters in Table 1.

TABLE I: Simulation Settings

Parameter I Value |

Duration of a simulation (W) 10,800 seconds (3 hours)
Number of BSNs (N) 5
Number of sensor nodes in a BSN (M) 3
Number of sensors per a sensor node (L) 4
Memory space in a sensor node 2 GB
Memory space in a sink node 16 GB
Total number of data requests from cloud apps 1,000
Maximum request windows size (max w;;x) 60 seconds
Number of generations (G ynq2) 100
Population size (|P;]) 100
Mutation rate (P,) 0.01

Cloud applications issue 1,000 sensor data requests during
three hours. Sensor data requests are uniformly distributed
over sensors. Every simulation result is the average with 20
independent simulation runs.

Figs. 2 show how BitC evolves BSN configuration strate-
gies through generations and improves the performance of
BSNs. In Figs. 2a and 2b, one of four performance objectives,
request fulfillment is considered. In Figs. 2c and 2d, all four
objectives/constraints are considered simultaneously.

In Fig. ??, request fulfillment gradually increases through
generations because it is considered as the objective. Its
average value reaches 96.5% in the last generation, which
satisfies the request fulfillment constraint (90%, Table I). This
is the best performance among Figs. ??, 2?2, ?? and ??. The
increase in request fulfillment contributes to the increase in
data yield to some extent (Fig. ??). Bandwidth consumption
and energy consumption deteriorate over time because they are
not considered as objectives and they conflict with the request
fulfillment objective.

Fig. ?? shows that, when all four objectives are considered
simultaneously, all objective values satisfy associated con-
straints and improve through generations.

Figs. ?? to ?? demonstrate that BitC allows BSNs to
successfully adapt their performance with respect to given ob-
jectives subject to given constraints. When multiple conflicting
objectives are considered simultaneously, BitC allows BSNs
to maintain their performance subject to given constraints by
balancing the trade-offs among those objectives.

VIII. RELATED WORK

Various architectures and research tools have been
proposed for cloud-integrated sensor networks including
BSNs [8]-[13]. Hassan et al. [8], Aberer et al. [9],
Gaynor et al. [10] and Boonma et al. [11] assume three-tier
architectures similar to BitC and investigate publish/subscribe
communication between the edge layer to the cloud layer.
Their focus is placed on push communication. In contrast,
BitC investigates push-pull hybrid communication between

— Data Yield
++++ Energy Consumption (Watts)

1.200 10,000

—Request Fulfiliment (%)
-+ Bandwidth Consumption (Kbps)
o1

% 20 40 60 80 100" 10%
Generations

20 80 106°%

4
Generations

(a) fp and fr with the Request (b) fr and fy with the Request (¢) fp and fr with the All Objec-
tive Enabled

Fulfillment Objective Enabled Fulfillment Objective Enabled

500,

400

300|

200

100/

1 12,000

— Request Fulfilment (%)
~+++ Bandwidth Consumption (Kbps)

95
— Data Yield
-+++ Energy Consumption (Wats)

1200 10,000

8,000

800

20 80 w0 1% 20 & 106°%

60
Generations

(d) fg and fy with the All Ob-
jective Enabled

40 60
Generations

Fig. 2: Objective Values through Generations

the sensor layer and the cloud layer through the edge layer.
Yuriyama et al. propose a two-tier architecture that consists of
the sensor and cloud layers [12]. The architectures proposed by
Yuriyama et al. and Fortino et al. [13] are similar to BitC in that
they leverage the notion of virtual sensors. However, they do
not consider push-pull (nor publish/subscribe) communication.
All the above-mentioned work do not consider adaptive/stable
configurations of sensor networks as BitC does.

Push-pull hybrid communication has been studied in sensor
networks [14]-[17]. However, few efforts exist to study it
between the edge and cloud layers in the context of cloud-
integrated sensor networks. Unlike those relevant work, this
paper formulates a sensor network configuration problem with
cloud-specific objectives as well as the ones in sensor networks
and seeks adaptive/stable solutions for the problem.

Xu et al. propose a three-tier architecture called CEB
(Cloud, Edge and Beneath), which is similar to BitC, and in-
vestigate a mechanism to adapt data transmission rates between
layers according to a given pattern of data requests [18]. CEB
runs two optimization algorithms collaboratively: OPT-1 and
OPT-2, which optimize data transmission rates between the
cloud and edge layers and between the edge and sensor layers,
respectively. Optimization is carried out on a sensor node by
sensor node basis with respect to a single objective: energy
consumption. In contrast, BitC considers sensing intervals and
sampling rates for sensors as well as data transmission rates
for nodes and runs a single algorithm for the entire group
of sensor and sink nodes with respect to multiple conflicting
objectives including energy consumption. BitC assumes sensor
data requests with time windows to heterogeneous sensor
networks while CEB assumes requests without time windows
to homogeneous networks.

IX. CONCLUSION

This paper proposes a cloud-integrated BSN architecture,
called BitC, which hosts virtualized sensors in clouds and
operates physical sensors through their virtual counterparts.
BitC performs push-pull hybrid communication between three
layers: cloud, edge and sensor layers. This paper formulates
a BSN configuration problem for BitC to seek equilibrium
solutions and approaches the problem with an evolutionary
game theoretic algorithm. A theoretical analysis proves that
BitC allows each BSN to operate at an equilibrium by using an

evolutionarily stable configuration strategy in a deterministic
(i.e., stable) manner. Simulation results demonstrate that BitC
allows BSNs to adapt their configurations to given operational
conditions and improve their performance with respect to
multiple objectives.

REFERENCES
(11

L. Freeman, “Home-sweet-home health care,” Mon. Labor Rev., no. 3,
March 1995.

U.S. Department of Health and Human Services, Centers for Medicare
and Medicaid Services, National Health Expenditure Data, 2013.

M. Chen, S. Gonzalez, A. V. Vasilakos, H. Cao, and V. C. Leung, “Body
area networks: A survey,” Mobile Netw. Appl., vol. 16, no. 2, 2011.

S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers, “A review
of wearable sensors and systems with application in rehabilitation,”
Journal of Neuroengineering and Rehabilitation, vol. 9, no. 21, 2012.
J. W. Weibull, Evolutionary Game Theory. MIT Press, 1996.

P. Taylor and L. Jonker, “Evolutionary stable strategies and game
dynamics,” Elsevier Mathematical Biosciences, vol. 40(1), 1978.

(2]
(3]

(4]

(5]

[71 N. Srinivas and K. Deb, “Multiobjective function optimization using
nondominated sorting genetic algorithms,” Evol. Computat., vol. 2,

no. 3, 1995.

M. M. Hassan, B. Song, and E.-N. Huh, “A framework of sensor-cloud
integration opportunities and challenges,” in Proc. the 3rd ACM Int’l
Conference on Ubiquitous Info. Mgt. and Comm., 2009.

K. Aberer, M. Hauswirth, and A. Salehi, “Infrastructure for data
processing in large-scale interconnected sensor networks,” in Proc. the
8th IEEE Int’l Conference on Mobile Data Management, 2007.

M. Gaynor, M. Welsh, S. Moulton, A. Rowan, E. LaCombe, and
J. Wynne, “Integrating wireless sensor networks with the grid,” IEEE
Internet Computing, July/August 2004.

(8]

(91

[10]

[11] P. Boonma and J. Suzuki, “TinyDDS: An interoperable and config-
urable publish/subscribe middleware for wireless sensor networks,” in
Principles and Apps. of Dist. Event-Based Systems, A. Hinze and

A. Buchmann, Eds. IGI Global, 2010, ch. 9.

M. Yuriyama and T. Kushida, “Sensor-cloud infrastructure - physical
sensor management with virtualized sensors on cloud computing,” in
Proc. the 13th Int’l Conf. on Network-Based Info. Sys., 2010.

G. Fortino, D. Parisi, V. Pirrone, and G. D. Fatta, “BodyCloud: A SaaS
approach for community body sensor networks,” Future Generation
Computer Systems, vol. 35, no. 6, pp. 62-79, 2014.

[12]

[13]

[14] H. Wada, P. Boonma, and J. Suzuki, “Chronus: A spatiotemporal
macroprogramming language for autonomic wireless sensor networks,”
in Autonomic Network Mgt. Principles: From Concepts to Applications,

N. Agoulmine, Ed. Elsevier, 2010, ch. 8.

P. Boonma, Q. Han, and J. Suzuki, “Leveraging biologically-inspired
mobile agents supporting composite needs of reliability and timeliness
in sensor applications,” in Proc. IEEE Int’l Conf. on Frontiers in the
Convergence of Biosci. and Info. Tech., 2007.

[15]

[16]

(17]

[18]

S. Kapadia and B. Krishnamachari, “Comparative analysis of push-pull
query strategies for wireless sensor networks,” in Proc. International
Conference on Distributed Computing in Sensor Systems, 20006.

M. Li, D. Ganesan, and P. Shenoy, “PRESTO: Feedback-driven data
management in sensor networks,” in Proc. USENIX Symposium on
Networked Systems Design and Implementation, 2006.

Y. Xu, S. Helal, M. Thai, and M. Scmalz, “Optimizing push/pull
envelopes for energy-efficient cloud-sensor systems,” in Proc. the 14th
ACM Int’l Conference on Modeling, Analysis and Simulation of Wireless
and Mobile Systems, 2011.

