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This paper considers a multi-tier architecture for cloud-integrated body sensor networks (BSNs), called Body-in-the-Cloud
(BitC), which is intended to support home healthcare with on-body energy harvesting devices (e.g., piezoelectric and thermoelectric
generators) as well as on-body physiological and activity monitoring sensors. This paper formulates a configuration problem in BitC
and approaches the problem with an evolutionary game theoretic algorithm to configure BSNs in an adaptive and stable manner.
BitC allows BSNs to adapt their configurations (i.e., sensing intervals and sampling rates as well as data transmission intervals)
to operational conditions (e.g., data request patterns) with respect to multiple conflicting performance objectives such as resource
consumption and data yield. In BitC, evolutionary multiobjective games are performed on configuration strategies (i.e., solution
candidates) with an aid of local search mechanisms. BitC theoretically guarantees that each BSN performs an evolutionarily stable
configuration strategy, which is an equilibrium solution under given operational conditions. Simulation results verify this theoretical
analysis; BSNs seek equilibria to perform adaptive and evolutionarily stable configuration strategies. This paper evaluates five
algorithmic variants of BitC under various settings and demonstrates that BitC allows BSNs to successfully leverage harvested
energy to balance their performance in different objectives such as resource consumption and data yield.
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I. INTRODUCTION

BODY sensor networks (BSNs) are expected to aid per-
vasive healthcare with on-body sensors by remotely and

continuously performing physiological and activity monitoring
for patients [1], [2]. This paper envisions an architecture
for cloud-integrated BSNs, called Body-in-the-Cloud (BitC),
which virtualizes per-patient BSNs onto clouds by taking
advantage of cloud computing features such as pay-per-use
billing, scalability in data storage and processing, availability
through multi-regional application deployment and accessibil-
ity through universal communication protocols (e.g., HTTP
and REST). BitC assumes energy harvesting aware BSNs, each
of which operates on-body energy harvesting devices (e.g.,
piezoelectric and thermoelectric generators) as well as on-body
sensors for, for example, heart rate, oxygen saturation, body
temperature and fall detection.

BitC consists of the sensor, edge and cloud layers (Fig. 1).
The sensor layer is a collection of sensor nodes in BSNs.
Each BSN operates one or more sensor nodes, each of which
is equipped with a sensor(s) and an energy harvester(s). Sensor
nodes are wirelessly connected to a dedicated per-patient
device or a patient’s computer (e.g., smartphone or tablet
machine) that serves as a sink node. The edge layer consists
of sink nodes, which collect sensor data from sensor nodes in
BSNs. The cloud layer consists of cloud environments that
host virtual sensors, which are virtualized counterparts (or
software counterparts) of physical sensors in BSNs. Virtual
sensors collect sensor data from sink nodes in the edge layer

and store those data for future use. The cloud layer also
hosts various applications that obtain sensor data from virtual
sensors and aid medical staff (e.g., clinicians, hospital/visiting
nurses and caregivers) to monitor patients and share sensor
data for clinical observation and intervention.

BitC performs push-pull hybrid communication between its
three layers. Each sensor node periodically collects data from
a sensor(s) attached to it based on sensor-specific sensing
intervals and sampling rates and transmits (or pushes) those
collected data to a sink node. The sink node in turn forwards
(or pushes) incoming sensor data periodically to virtual sensors
in clouds. When a virtual sensor does not have sensor data that
a cloud application requires, it obtains (or pulls) that data from
a sink node or a sensor node. This push-pull communication is
intended to make as much sensor data as possible available for
cloud applications by taking advantage of push communication
while allowing virtual sensors to pull any missing or extra
data anytime in an on-demand manner. For example, when an
anomaly is found in pushed sensor data, medical staff may pull
extra data in a higher temporal resolution to better understand a
patient’s medical condition. Given a sufficient amount of data,
they may perform clinical intervention, order clinical cares,
dispatch ambulances or notify family members of patients.

This paper focuses on configuring BSNs in BitC by ad-
justing four types of parameters (i.e., sensing intervals and
sampling rates for sensors as well as data transmission inter-
vals for sensor and sink nodes) and studies two properties in
configuring BSNs:
• Adaptability: Adjusting BSN configurations according to
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operational conditions (e.g., data request patterns placed
by cloud applications and availability of resources such
as bandwidth and memory) with respect to performance
objectives such as bandwidth consumption, energy con-
sumption and data yield.

• Stability: Minimizing oscillations (non-deterministic in-
consistencies) in making adaptation decisions. This paper
considers stability as the reachability to at least one of
equilibrium solutions in decision making. A lack of sta-
bility results in making inconsistent adaptation decisions
in different attempts/trials with the same problem settings.

BitC leverages an evolutionary game theoretic algorithm to
configure BSNs in an adaptive and stable manner. This paper
describes the design of BitC and evaluates its adaptability and
stability. In BitC, each BSN maintains a set (or a population)
of configuration strategies (solution candidates), each of which
specifies a set of configuration parameters for that BSN. BitC
theoretically guarantees that, through a series of evolutionary
games between BSN configuration strategies, the population
state (i.e., the distribution of strategies) converges to an
evolutionarily stable equilibrium, which is always converged to
regardless of the initial state. (A dominant strategy in the evo-
lutionarily stable population state is called an evolutionarily
stable strategy (ESS).) In this state, no other strategies except
an ESS can dominate the population. Given this theoretical
property, BitC allows each BSN to operate at equilibrium by
using an ESS in a deterministic (i.e., stable) manner.

Simulation results verify this theoretical analysis; BSNs
seek equilibria to perform adaptive and evolutionarily stable
configuration strategies and adapt their configuration param-
eters to given operational conditions subject to given con-
straints. This paper evaluates five algorithmic variants of BitC
under various settings and demonstrates that BitC allows BSNs
to successfully leverage harvested energy to balance their per-
formance with respect to multiple objectives such as resource
consumption and data yield. BitC’s performance is evaluated
in comparison to a well-known multiobjective evolutionary
optimization algorithm, NSGA-II [3], while maintaining 37%
higher stability (lower oscillations) in performance across
different simulation runs.

II. AN ARCHITECTURAL OVERVIEW OF BITC
BitC consists of the following three layers (Fig. 1).
Sensor Layer: operates one or more BSNs on a per-patient

basis (Fig. 1). Each BSN contains one or more sensor node
in a certain topology (e.g., tree, star or mesh topology). This
paper assumes the star topology. Each sensor node is equipped
with a sensor(s) and an energy harvester(s). It is assumed to
be battery-operated. It supplies a limited amount of energy
to a sensor(s) attached to it and receives power supply from
an attached energy harvester(s) as it/they harvest energy. It
maintains a sensing interval and a sampling rate for each
attached sensor. Upon a sensor reading, it stores collected data
in its own memory space. Given a data transmission interval,
it periodically flushes all data stored in its memory space and
transmits the data to a sink node.

Edge Layer: consists of sink nodes, each of which partic-
ipates in a certain BSN and receives sensor data periodically

Fig. 1: A Push-Pull Hybrid Communication in BitC

Fig. 2: Virtual sensor communication diagram

from sensor nodes in the BSN. A sink node stores incoming
sensor data in its memory space and periodically flushes stored
data to transmit (or push) them to the cloud layer. It maintains
the mappings between physical and virtual sensors. In other
words, it knows the origins and destinations of sensor data.
Different sink nodes have different data transmission intervals.
A sink node’s data transmission interval can be different from
the ones of sensor nodes in the same BSN. Sink nodes are
assumed to have limited energy supplies through batteries.

In addition to pushing sensor data to a virtual sensor, each
sink node receives a pull request from a virtual sensor when
the virtual sensor does not haves ensor data that a cloud
application(s) requires. If the sink node has the requested
data in its memory, it returns that data. Otherwise, it issues
another pull request to a sensor node that is responsible for
the requested data. Upon receiving a pull request, the sensor
node returns the requested data if it has the data in its memory.
Otherwise, it returns an error message to a could application.

Cloud Layer: operates on clouds to host applications
that allow medical staff to place sensor data requests on
virtual sensors in order to monitor patients. If a virtual sensor
has data that an application requests, it returns that data.
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Otherwise, it issues a pull request to a sink node. While push
communication carries out a one-way upstream travel of sensor
data, pull communication incurs a round trip for requesting
data and receiving that data (or an error message).

Virtual sensors are java nodes running in the server on
the cloud layer. These virtual sensor nodes are predefined by
medical doctors. Each sensor is associated with a four digit
identification number, the first two digit indicate the index
of the BSN and the last two digit indicate the index of the
sensor. Once data are pushed to the cloud layer, corresponding
virtual sensor node responds to the arrived data by checking
the identification number. Virtual sensors call storeToDB java
method which issues a sql query that store the received data to
the corresponding table in the database. Every time a request
come in virtual sensors first check whether the data is available
by calling isAvailable java method. If the data is available then
it retrieves the data by calling getFromDB java method that
issues a sql query to the corresponding table in the database, if
not virtual sensors issues a pull request to Edge layer by calling
pullData java method. Once virtual sensors get the desired
data, it backs to user.

III. BSN CONFIGURATION PROBLEM IN BITC

This section describes a BSN configuration problem for
which BitC seeks equilibrium solutions. Each BSN config-
uration consists of four types of parameters (i.e., decision
variables): sensing intervals and sampling rates for sensor
nodes as well as data transmission intervals for sensor and
sink nodes. The problem is stated with the following symbols.
• B = {b1, b2, ..., bi, ..., bN} denotes the set of N BSNs,

each of which operates for a patient.
• Each BSN bi consists of a sink node (denoted by mi) and
M sensors: bi = {si1, si2, ..., sij , ..., siM}. oij is the data
transmission interval for sij to transmit sensor collected
data. pij and qij are the sensing interval and sampling
rate for sij . Sampling rate is defined as the number of
sensor data samples collected in a unit time. Each sensor
stores collected sensor data in its memory space until its
next push transmission. If the memory becomes full, it
performs FIFO (First-In-First-Out) data replacement. In a
push transmission, it flushes and sends out all data stored
in its memory.

• omi
denotes the data transmission interval for mi to

forward (or push) sensor data incoming from sensor
nodes in bi In between two push transmissions, mi stores
sensor data from bi in its memory. It performs FIFO
data replacement if the memory becomes full. In a push
transmission, it flushes and sends out all data stored in
the memory.

• Rij = {rij1, rij2, ..., rijr, ..., rij|Rijk|} denotes the set of
sensor data requests that cloud applications issue to the
virtual counterpart of sij (s′ij) during the time period
of W in the past. Each request rijr is characterized by its
time stamp (tijr) and time window (wijr). It retrieves all
sensor data available in the time interval [tijr−wijr, tijr].
If s′ij has at least one data in the interval, it returns those
data; otherwise, it issues a pull request to mi.

• Rm
ij ∈ Rij denotes the set of sensor data requests for

which a virtual sensor s′ij has no data. |Rm
ij | indicates

the number of pull requests that s′ij issues to mi. In other
words, Rij \ Rm

ij is the set of sensor data requests that
s′ij fulfills regarding sij .

• Rs
ij ∈ Rm

ij ∈ Rij denotes the set of sensor data requests
for which mi has no data. |Rs

ij | indicates the number
of pull requests that mi issues to hij for collecting data
from sij . Rm

ij \Rs
ij is the set of sensor data requests that

mi fulfills regarding sij .

This paper considers four performance objectives: band-
width consumption between the edge and cloud layers (fB),
energy consumption of sensor and sink nodes (fE), request
fulfillment for cloud applications (fR) and data yield for cloud
applications (fD). The first two objectives are to be minimized
while the others are to be maximized.

The bandwidth consumption objective (fB) is defined as the
total amount of data transmitted per a unit time between the
edge and cloud layers. This objective impacts the payment for
bandwidth consumption based on a cloud operator’s pay-per-
use billing scheme. It also impacts the lifetime of sink nodes.
fB is computed as follows.

fB =
1

W

N∑
i=1

M∑
j=1

(cijdij) +
1

W

N∑
i=1

M∑
j=1

|Rm
ij |∑

r=1

(φijrdij + dr)

+
1

W

N∑
i=1

M∑
j=1

|Rs
ij |∑

r=1

er(|Rs
ij | − ηijr) (1)

The first and second terms indicate the bandwidth consump-
tion by one-way push communication from the edge layer to
the cloud layer and two-way pull communication between the
cloud and edge layers, respectively. cij denotes the number
of sensor data that sij generates and sink nodes in turn push
to the cloud layer during W . dij denotes the size of each
sensor data (in bits) that sij generates. It is currently computed
as: qij × 16 bits/sample. φijr denotes the number of sensor
data that a pull request r ∈ Rm

ij can collect from sink nodes
(φijr = |Rm

ij \Rs
ij |). dr is the size of a pull request transmitted

from the cloud layer to the edge layer. The third term in Eq. 1
indicates the bandwidth consumption by the error messages
that sensors generate because they fail to fulfill pull requests.
ηijr is the number of sensor data that a pull request r ∈ Rs

ij

can collect from sensor nodes. er is the size of an error
message.

The energy consumption objective (fE) is defined as the
total amount of energy that sensor and sink nodes consume
for data transmissions during W . It impacts the lifetime of
sensor and sink nodes. It is computed as follows.
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fE =

N∑
i=1

M∑
j=1

W

oij
etdij +

N∑
i=1

M∑
j=1

|Rs
ij |∑

r=1

etηijr(dij + d′r)

+

N∑
i=1

M∑
j=1

L∑
k=1

W

omi

etdij +

N∑
i=1

M∑
j=1

|Rm
ij |∑

r=1

etφijr(dij + dr)

+ 2×
N∑
i=1

M∑
j=1

|Rs
ij |∑

r=1

eter(|Rs
ij | − ηijr) (2)

The first and second terms indicate the energy consumption
by one-way push communication from the sensor layer to the
edge layer and two-way pull communication between the edge
layer and the sensor layer, respectively. et denotes the amount
of energy (in Watts) that a sensor or sink node consumes to
transmit a single bit of data. d′r denotes the size of a pull
request from the edge layer to the sensor layer. The third
and fourth terms indicate the energy consumption by push
and pull communication between the edge and cloud layer,
respectively. The fifth term indicates the energy consumption
for transmitting error messages on sensor and sink nodes.

The request fulfillment objective (fR) is the ratio of the
number of fulfilled requests over the total number of requests:

fR =

∑N
i=1

∑M
j=1

∑|Rij |
r=1 IRij

|Rij |
× 100 (3)

IRij
= 1 if a request r ∈ Rij obtains at least one sensor

data; otherwise, IRij
= 0.

The data yield objective (fY ) is defined as the total amount
of data that cloud applications gather for their users. This
objective impacts the informedness and situation awareness
for application users. It is computed as follows.

fY =

N∑
i=1

M∑
j=1

|Rm
ij |∑

r=1

φijr +

N∑
i=1

M∑
j=1

|Rs
ij |∑

r=1

ηijr + cij (4)

BitC considers four constraints. The first constraint (CE) is
the upper limit for energy consumption: fE < CE . A violation
for the constraint (gE) is computed as gE = IE × (fE −CE)
where IE = 1 if fE > CE ; otherwise IE = 0.

The second constraint (CY ) is the lower limit for data yield:
fY > CY . A constraint violation (gY ) is computed as gY =
IY ×(CY −fY ) where IY = 1 if fY < CY ; otherwise IY = 0.

The third constraint (CR) is the lower limit for request
fulfillment: fR > CR. The constraint violation in request
fulfillment (gR) is computed as gR = IR × (CR − fR) where
IR = 1 if fR < CR; otherwise IR = 0.

The fourth constraint (CB) is the upper limit for bandwidth
consumption: fB < CB . A violation for this constraint (gB) is
computed as gB = IB×(fB−CB) where IB = 1 if fB > CB ;
otherwise IB = 0.

IV. BACKGROUND: EVOLUTIONARY GAME THEORY

In a conventional game, the objective of a player is to
choose a strategy that maximizes its payoff in a single game. In

contrast, evolutionary games are played repeatedly by players
randomly drawn from a population [4]. This section overviews
key elements in evolutionary games: evolutionarily stable
strategies (ESS) and replicator dynamics.

A. Evolutionarily Stable Strategies (ESS)

Suppose all players in the initial population are programmed
to play a certain (incumbent) strategy k. Then, let a small
population share of players, x ∈ (0, 1), mutate and play a
different (mutant) strategy `. When a player is drawn for a
game, the probabilities that its opponent plays k and ` are
1− x and x, respectively. Thus, the expected payoffs for the
player to play k and ` are denoted as U(k, x`+ (1−x)k) and
U(`, x`+ (1− x)k), respectively.

Definition 1. A strategy k is said to be evolutionarily stable
if, for every strategy ` 6= k, a certain x̄ ∈ (0, 1) exists, such
that the inequality

U(k, x`+ (1− x)k) > U(`, x`+ (1− x)k) (5)

holds for all x ∈ (0, x̄).

If the payoff function is linear, Equation 5 derives:

(1− x)U(k, k) + xU(k, `) > (1− x)U(`, k) + xU(`, `) (6)

If x is close to zero, Equation 6 derives either

U(k, k) > U(`, k), or

U(k, k) = U(`, k) and U(k, `) > U(`, `) (7)

This indicates that a player associated with the strategy k
gains a higher payoff than the ones associated with the other
strategies. Therefore, no players can benefit by changing their
strategies from k to the others. This means that an ESS is
a solution on a Nash equilibrium. An ESS is a strategy that
cannot be invaded by any alternative (mutant) strategies that
have lower population shares.

B. Replicator Dynamics

The replicator dynamics describes how population shares
associated with different strategies evolve over time [5]. Let
λk(t) ≥ 0 be the number of players who play the strategy
k ∈ K, where K is the set of available strategies. The
total population of players is given by λ(t) =

∑ |K|
k=1λk(t).

Let xk(t) = λk(t)/λ(t) be the population share of players
who play k at time t. The population state is defined by
X(t) = [x1(t), · · · , xk(t), · · · , xK(t)]. Given X , the expected
payoff of playing k is denoted by U(k,X). The population’s
average payoff, which is same as the payoff of a player drawn
randomly from the population, is denoted by U(X,X) =∑ |K|

k=1xk ·U(k,X). In the replicator dynamics, the dynamics
of the population share xk is described as follows. ẋk is the
time derivative of xk.

ẋk = xk · [U(k,X)− U(X,X)] (8)
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This equation states that players increase (or decrease) their
population shares when their payoffs are higher (or lower) than
the population’s average payoff.

Theorem 1. If a strategy k is strictly dominated, then
xk(t)t→∞ → 0.

A strategy is said to be strictly dominant if its payoff is
strictly higher than any opponents. As its population share
grows, it dominates the population over time. Conversely,
a strategy is said to be strictly dominated if its payoff is
lower than that of a strictly dominant strategy. Thus, strictly
dominated strategies disappear in the population over time.

There is a close connection between Nash equilibria and the
steady states in the replicator dynamics, in which the popula-
tion shares do not change over time. Since no players change
their strategies on Nash equilibria, every Nash equilibrium
is a steady state in the replicator dynamics. As described in
Section IV-A, an ESS is a solution on a Nash equilibrium.
Thus, an ESS is a solution at a steady state in the replicator
dynamics. In other words, an ESS is the strictly dominant
strategy in the population on a steady state.

BitC maintains a population of configuration strategies for
each BSN. In each population, strategies are randomly drawn
to play games repeatedly until the population state reaches a
steady state. Then, BitC identifies a strictly dominant strategy
in the population and configures a BSN based on the strategy
as an ESS.

V. BODY-IN-THE-CLOUD

BitC maintains N populations, {P1,P2, ...,PN}, for N
BSNs and performs games among strategies in each popu-
lation. Each strategy s(bi) specifies a particular configuration
for a BSN bi using four types of parameters: sensing intervals
and sampling rates for sensors (pij and qij) as well as data
transmission intervals for sink and sensor nodes (omi and oij).

s(bi) =
⋃

j∈1..M
(omi , oij , pij , qij) 1 < i < N (9)

Algorithm 1 shows how BitC seeks an evolutionarily stable
configuration strategy for each BSN through evolutionary
games. In the 0-th generation, strategies are randomly gen-
erated for each of N populations {P1,P2, ...,PN} (Line 2).
Those strategies may or may not be feasible. Note that a
strategy is said to be feasible if it violates none of four
constraints described in Section III.

In each generation (g), a series of games are carried out on
every population (Lines 4 to 28). A single game randomly
chooses a pair of strategies (s1 and s2) and distinguishes
them to the winner and the loser with respect to performance
objectives described in Section III (Lines 7 to 9). The winner
is replicated to increase its population share and mutated with
polynomial mutation (Lines 10 to 18) [3]. Mutation randomly
chooses a parameter (or parameters) in a given strategy with a
certain mutation rate Pm and alters its/their value(s) at random
(Lines 12 to 14). Then a game is performed between loser
and the mutated winner (Line 16). Elitism concept is applied
here to select the best two among strategies (winner, loser

and mutated winner), and the worst strategy disappears in the
population.

Once all strategies play games in the population, BitC
identifies a feasible strategy whose population share (xs) is the
highest and determines it as a dominant strategy (di) (Lines 20
to 24). After a dominant strategy is determined, BitC performs
local search to improve the dominant strategy (Line 26). In
the end, BitC configures a BSN with the parameters contained
in the dominant strategy (Line 27).

A game is carried out based on the superior-inferior rela-
tionship between given two strategies and their feasibility (c.f.
performGame() in Algorithm 1). If a feasible strategy and
an infeasible strategy participate in a game, the feasible one
always wins over its opponent. If both strategies are feasible,
they are compared with one of the following five schemes to
select the winner.
• Pareto dominance (PD): This scheme is based on the

notion of dominance [6], in which a strategy s1 is said
to dominate another strategy s2 if both of the following
conditions hold:

– s1’s objective values are superior than, or equal to,
s2’s in all objectives.

– s1’s objective values are superior than s2’s in at least
one objectives.

The dominating strategy wins a game over the dominated
one. If two strategies are non-dominated with each other,
the winner is randomly selected.

• Hypervolume (HV): This scheme is based on the hyper-
volume (HV) metric [7]. It measures the volume that a
given strategy s dominates in the objective space:

HV (s) = Λ
(⋃
{x′|s � x′ � xr}

)
(10)

Λ denotes the Lebesgue measure. xr is the reference
point placed in the objective space. A higher hypervol-
ume means that a strategy is more optimal. Given two
strategies, the one with a higher hypervolume value wins
a game. If both have the same hypervolume value, the
winner is randomly selected.

• Hybrid of Pareto dominance and hypervolume (PD-HV):
This scheme is a combination of the above two schemes.
First, it performs the Pareto dominance (PD) comparison
for given two strategies. If they are non-dominated with
each other, the hypervolume (HV) comparison is used to
select the winner. If they still tie with the hypervolume
metric, the winner is randomly selected.

• Maxmin (MM): This scheme is based on the maxmin
(MM) metric [8]. It measures how distant (i.e., better)
a given strategy s is from the other strategies in a
population (s

′ ∈ Pi).

MM(s) = max
s′∈Pi\{s}

{
min
k

(
sk, s

′

k

)}
(11)

sk denotes the k-th objective value of the strategy s.
Given two strategies, the one with a higher maxmin value
wins a game. If both have the same maxmin value, the
winner is randomly selected.
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• Hybrid of Pareto dominance and maxmin (PD-MM): This
scheme is a combination of the PD and MM schemes.
First, it performs the Pareto dominance (PD) comparison
for given two strategies. If they are non-dominated with
each other, the MM comparison is used to select the
winner. If they still tie with the maxmin metric, the
winner is randomly selected.

If both strategies are infeasible in a game, they are compared
based on their constraint violation. An infeasible strategy s1
wins a game over another infeasible strategy s2 if both of the
following conditions hold:

• s1’s constraint violation is lower than, or equal to, s2’s
in all constraints.

• s1’s constraint violation is lower than s2’s in at least one
constraints.

Algorithm 1 Evolutionary Process in BitC
1: g = 0
2: Randomly generate the initial N populations for N BSNs: P =
{P1,P2, ...,PN}

3: while g < Gmax do
4: for each population Pi randomly selected from P do
5: P ′

i ← ∅
6: for j = 1 to |Pi|/2 do
7: s1 ← randomlySelect(Pi)
8: s2 ← randomlySelect(Pi)
9: {winner, loser} ← performGame(s1, s2)

10: replica ← replicate(winner)
11: for each parameter v in replica do
12: if random() ≤ Pm then
13: replica ← mutate(replica, v)
14: end if
15: end for
16: winner′ ← performGame(loser, replica)
17: Pi \ {s1, s2}
18: P ′

i ∪ {winner, winner′}
19: end for
20: Pi ← P ′

i
21: di ← argmaxs∈Pi

xs

22: while di is infeasible do
23: Pi \ {di}
24: di ← argmaxs∈Pi

xs

25: end while
26: di ← localSearch(di)
27: Configure a BSN in question based on di.
28: end for
29: g = g + 1

30: end while

This paper studies three different local search mechanisms
(c.f. localSearch() in Algorithm 1). They are all based on
polynomial mutation. Algorithm 2 shows the first mechanism,
Tabu Local Search (TLS). TLS creates Q mutants of a given
strategy (di) using polynomial mutation and identifies the best
of Q + 1 strategies (di and its Q mutants). As mutants are
created, TLS updates a tabu list T to record which parameters
have been mutated so that a new mutant is never be created
by altering taboo parameters (i.e., the parameters in T ).

The second local search mechanism is called Greedy Local
Search (GLS) (Algorithm 3). Similar to TLS, GLS creates Q
mutants iteratively; however, it replaces the original strategy
(e.g., di) with a mutant if the mutant wins over the original
in a game (Line 7). Though Q iterations, GLS keeps the best
mutant discovered so far and mutates it when mutation occurs.

Algorithm 2 Tabu Local Search (localSearch())
Input: di: Dominant strategy to improve
Output: Improved dominant strategy

1: T ← ∅
2: for each parameter v ∈ di and v /∈ T do
3: if random() ≤ Pm then
4: replica ← mutate(di, v)
5: T ← T ∪ {v}
6: end if
7: end for
8: for i = 1 to Q− 1 do
9: for each parameter v ∈ di and v /∈ T do

10: if random() ≤ Pm then
11: replica′ ← mutate(di, v)
12: T ← T ∪ {v}
13: end if
14: end for
15: replica ← performGame(replica, replica′)
16: end for
17: best ← performGame(replica, di)
18: return best

Algorithm 3 Greedy Local Search (localSearch())
Input: di: Dominant strategy to improve
Output: Improved dominant strategy

1: for i = 1 to Q do
2: for each parameter v in replica do
3: if random() ≤ Pm then
4: replica ← mutate(di, v)
5: end if
6: end for
7: di ← performGame(replica, di)
8: end for
9: return di

Algorithm 4 shows the third local search mechanism,
Greedy Tabu Local Search (GTLS). It customizes GLS with a
tabu list T . It avoids taboo parameters in T when it performs
mutation.

VI. STABILITY ANALYSIS

This section analyzes BitC’s stability (i.e., reachability to at
least one of Nash equilibrium) by proving the state of each
population converges to an evolutionarily stable equillibrium.
The proof consists of three steps: (1) designing a set of differ-
ential equations that describe the dynamics of the population
state, (2) proving an strategy selection process has equilibria,
and (3) proving the the equilibria are asymptotically (or
evolutionarily) stable. The proof uses the following symbols:
• S denotes the set of available strategies. S∗ denotes a set

of strategies that appear in the population.
• X(t) = {x1(t), x2(t), · · · , x|S∗|(t)} denotes a population

state at time t where xs(t) is the population share a
strategy s ∈ S.

∑
s∈S∗(xs) = 1.

• Fs denotes the fitness of a strategy s. It is a relative value
that is determined in a game against an opponent based
on the dominance relationship between them. The winner
of a game earns a higher fitness than the loser.

• psk = xk·φ(Fs−Fk) denotes the probability that a strategy
s is replicated by winning a game against another strategy
k. φ(Fs − Fk) is the probability that the fitness of s is
higher than that of k.

The dynamics of the population share of s is described as:
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Algorithm 4 Greedy Tabu Local Search (localSearch())
Input: di: Dominant strategy to improve
Output: Improved dominant strategy

1: T ← ∅
2: for i = 1 to Q do
3: for each parameter v ∈ di and v /∈ T do
4: if random() ≤ Pm then
5: replica ← mutate(di, v)
6: T ← T ∪ {v}
7: end if
8: end for
9: di ← performGame(replica, di)

10: end for
11: return di

ẋs =
∑

k∈S∗,k 6=s

{xspsk − xkpks}

= xs
∑

k∈S∗,k 6=s

xk{φ(Fs − Fk)− φ(Fk − Fs)} (12)

Note that if s is strictly dominated, xs(t)t→∞ → 0.

Theorem 2. The state of a population converges to an
equilibrium.

Proof. It is true that different strategies have different fitness
values. In other words, only one strategy has the highest
fitness among others. Given Theorem 1, assuming that F1 >
F2 > · · · > F|S∗|, the population state converges to an
equilibrium: X(t)t→∞ = {x1(t), x2(t), · · · , x|S∗|(t)}t→∞ =
{1, 0, · · · , 0}.

Theorem 3. The equilibrium found in Theorem 2 is asymp-
totically stable.

Proof. At the equilibrium X = {1, 0, · · · , 0}, a set of dif-
ferential equations can be downsized by substituting x1 =
1− x2 − · · · − x|S∗|

żs = zs[cs1(1− zs) +

|s∗|∑
i=2,i6=s

zi · csi], s, k = 2, ..., |S∗| (13)

where csk ≡ φ(Fs − Fk) − φ(Fk − Fs)) and Z(t) =
{z2(t), z3(t), · · · , z|S∗|(t)} denotes the corresponding down-
sized population state. Given Theorem 1, Zt→∞ = Zeq =
{0, 0, · · · , 0} of (|S∗| − 1)-dimension.

If all Eigenvalues of Jaccobian matrix of Z(t) has negative
real parts, Zeq is asymptotically stable. The Jaccobian matrix
J’s elements are described as follows where s, k = 2, ..., |S∗|.

Jsk =

[
∂żs
∂zk

]
|Z=Zeq

=

[
∂zs[cs1(1− zs) +

∑|S∗|
i=2,i6=s zi · csi]

∂zk

]
|Z=Zeq

(14)

Therefore, J is given as follows, where c21, c31, · · · , c|S∗|1 are
J’s Eigenvalues.

J =


c21 0 · · · 0
0 c31 · · · 0
...

...
. . .

...
0 0 · · · c|S∗|1

 (15)

cs1 = −φ(F1 − Fs) < 0 for all s; therefore, Zeq =
{0, 0, · · · , 0} is asymptotically stable.

VII. SIMULATION EVALUATION

This section evaluates BitC through simulations and dis-
cusses how BitC allows BSNs to adapt their configurations
to given operational conditions (e.g., data request patterns
placed by cloud applications and memory space availability
in sink and sensor nodes) Simulations are configured with the
parameters shown in Table I.

TABLE I: Simulation Settings

Parameter Value
Duration of a simulation (W ) 10,800 secs (3 hrs)

Number of simulation runs 10
Number of BSNs (N ) 20 and 100

Number of sensor nodes in a BSN (M ) 4
Memory space in a sensor node 2 GB
Memory space in a sink node 16 GB

Total number of data requests from cloud apps 1,000
Size of a data request (dr and d′r) 100 bytes

Size of an error message (er) 250 bytes
Energy consumption for a single bit of data (et) 0.001 Watt

Blood pressure request time window [0, 1000 secs]
Acelerometer request time window [0, 1800 secs]

ECG request time window [0, 600 secs]
Number of generations (Gmax) 300

Number of local search iterations (Q) 20
Population size (|Pi|) 100
Mutation rate (Pm) 1/V

This paper assumes a nursing home where senior resi-
dents/patients live. A small-scale and a larger-scale simula-
tions are carried out with 20 and 100 residents, respectively.
The small-scale setting is used unless otherwise noted. Each
resident is simulated to wear four sensors: a blood pressure
sensor, an ECG sensor and two accelerometers (Fig. 1).

Cloud applications issue 1,000 data requests during three
hours. Data requests are uniformly distributed over virtual
sensors. A time window is randomly set for each request to
a sensor. For example, it is set with the uniform distribution
in between 0 and 600 seconds for an ECG sensor (Table I).
Mutation rate is set to 1/V where V is the number of
parameters in a strategy. Every simulation result is the average
with 10 independent simulation runs.

TABLE II: Energy Harvesting Configurations

Category Energy
source

Harvested
energy in 3 hrs

Total harvested
energy in 3 hrs

Very healthy Piezo (2.0 Hz)
Thermo

18.27 W
0.10 W 18.37 W

Healthy Piezo (1.38 Hz)
Thermo

12.56 W
0.068 W 12.63 W

Rehabilitation Piezo (0.25 Hz)
Thermo

2.28 W
0.0124 W 2.29 W

Wheelchair Piezo (0.0 Hz)
Thermo

0.0 W
0.0 W 0.0 W

This paper assumes four types of residents (Table II). 25%
of residents are simulated to be in each category. Each resident
wears two energy harvesters: piezoelectric energy generator
(PEG) and thermoelectric generators (TEG). A PEG and a
TEG are assumed to be embedded in a shoe and attached
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to the skin, respectively (Fig. 1). A PEG generates energy
(piezoelectricity) from walking activities of a resident [9]. A
TEG generates energy (thermoelectricity) from a resident’s
body temperature [10].

The amount of harvested energy is computed based on a
set of daily activities assumed for each type of residents.
For example, a very healthy resident is assumed to have a
scheduled walk and an excercise session with, for example, a
treadmill under the average walking step frequency of 2 hertz.
A PEG and a TEG is assumed to generate 11 mW per step
and 0.06 mW per second [9], [10].

TABLE III: Constraint Combinations

Constraint Combination CE (W ) CY CR (%) CB (Kbps)
C∞ ∞ 0 0 ∞
CV L 450 16 90 30
CL 350 17 93 25
CM 200 18 95 20
CS 150 19 97 10
CV S 100 20 99 7
CEN 50 16 90 30
CDY 450 25 90 30

This paper simulates eight different combinations of con-
straints (Table III): no constraints (C∞), very lightweight
(CV L), lightweight (CL), moderate (CM ), stringent (CS), very
stringent (CV S), very stringent for energy consumption (CEN )
and very stringent for data yield (CDY ). C∞ is used unless
otherwise noted.

Comparative performance study is carried out for BitC’s
five variants (i.e., PD, HV, PD-HV, MM and PD-MM in
Section V). BitC-PD is used unless otherwise noted. BitC
is also compared with NSGA-II, which is a well-known
multiobjective evolutionary algorithm [3]. BitC and NSGA-
II use the same parameter settings shown in Table I. All
other NSGA-II settings are borrowed from [3]. Both BitC and
NSGA-II are implemented with jMetal [11].

Table IV examines how a mutation-related parameter, called
distribution index (ηm in [3]), impacts the performance of
BitC. This parameter controls how likely a mutated strat-
egy is similar to its original. (A higher distribution index
makes a mutant more similar to its original.) In Table IV,
the performance of BitC is evaluated with the hypervolume
measure that a set of dominant strategies yield in the 300th
generation. The hypervolume metric indicates the union of the
volumes that a given set of solutions dominates in the objective
space [7]. A higher hypervolume means that a set of solutions
is more optimal. As shown in Table IV, BitC yields the best
performance with the distribution index value of 60. (Local
search is not used to obtain this result.) Thus, this parameter
setting is used in all successive simulations.

TABLE IV: Impacts of Distribution Index Values on Hyper-
volume (HV)

Distribution Index HV Distribution Index HV
45 0.886 50 0.910
55 0.912 60 0.917
65 0.903

Fig. 3 studies how different local search mechanisms impact

the performance of BitC. It verifies that all of them can im-
prove BitC’s performance. Among them, greedy local search
(GLS) is the most effective in both convergence speed and
hypervolume. Thus, GLS is used in all successive simulations.

Fig. 3: Local Search Comparison

Table V illustrates the hypervolume that each BitC variant
yields at the last generation. As shown in this table, BitC-
HV yields the highest hypervolume value among five variants.
Therefore, the variant is used in all successive simulations.

TABLE V: Comparison of BitC’s Variants in Hypervolume

Algorithm Hypervolume (HV)
BitC PD 0.9247
BitC HV 0.9394

BitC PD-HV 0.9056
BitC MM 0.9071

BitC PD-MM 0.9143

BitC yields a single set of objective values with dominant
strategies at each generation while NSGA-II yields 100 sets
of objective values with 100 individuals at each generation.
Therefore, in Table VI, the BitC solution is evaluated against
an NSGA-II individual that is closest to the solution in the
objective space. Table VI compares BitC-HV and NSGA-II
based on three metrics: objective values, hypervolume and Eu-
clidean distance. For NSGA-II, objective values are measured
with an individual that minimizes the Euclidean distance to the
BitC solution at the last generation. Hypervolume is measured
with the NSGA-II individual. Distance is measured in between
the NSGA-II individual and the BitC solution. Distance is
computed with each objective normalized to [0, 1]. (The value
range of distance is [0, 2].)

As shown in Table VI, BitC-HV is non-dominated with
NSGA-II with respect to four objectives. BitC-HV outper-
forms NSGA-II and it gets very close to the performance
bounds in three objectives (request fulfillment, bandwidth
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consumption and energy consumption) while NSGA-II outper-
forms BitC-HV in data yield. BitC-HV yields a slightly higher
(2% higher) hypervolume value than NSGA-II. Table VI
demonstrates that BitC-HV slightly outperforms NSGA-II on
an a solution-to-solution basis. The performance bounds are
given by running NSGA-II with single objective. Euclidean
and Manhattan distances are used as metrics. In both metrics,
a shorter distance means a given solution is closer to the
performance bounds. BitC is closer to the bounds than NSGA-
II by 29% and 34% in Euclidean and Manhattan distances,
respectively.

TABLE VI: Comparison of BitC-HV and NSGA-II

Objective NSGA-II BitC-HV Bounds
Request Fulfillment: fR (%) 97.6 98.35 99.00

Bandwidth: fB (Kbps) 10.45 7.41 7.32
Energy consumption: fE (Watts) 178.89 129.26 126.91

Data Yield: fY 37.92 14.54 44.72
Hypervolume 0.922 0.9394 -

Euclidean distance 0.152 0.108 -
Manhattan distance 0.232 0.153 -

Table VII shows the variance of objective values that BitC-
HV and NSGA-II yield at the last generation in 10 different
simulation runs. A lower variance means higher stability (or
higher similarity) in objective value results (i.e., lower oscilla-
tions in objective value results) among different simulation
runs. BitC-HV maintains significantly higher stability than
NSGA-II in all objectives except energy consumption. On
average, BitC’s stability is 36.75% higher than NSGA-II’s.
This result exhibits BitC’s stability property (i.e. reachability
to at least one equillibira), which NSGA-II does not have.

TABLE VII: Stability of Objective Values in BitC-HV and
NSGA-II

Objectives BitC-HV NSGA-II Diff (%)
Request Fulfillment: fR 0.05 0.5 90%
Bandwidth: fB 0.17 0.22 22.72%
Energy Consumption: fE 3.38 3.01 -12.33%
Data Yield: fY 0.42 0.97 56.70%
Average Difference (%) – – 36.75%

Fig. 4 shows two three-dimensional objective spaces that
plot a set of dominant strategies obtained from individual pop-
ulations at each generation. Each blue dot indicates the average
objective values that dominant strategies yield at a particular
generation in 10 simulation runs. The trajectory of blue dots
illustrates a path through which strategies evolve and improve
objective values. Gray and red dots represent 10 different
sets of objective values at the first and last generation in 10
simulation runs, respectively. While initial (gray) dots disperse
(because the initial strategies are generated at random), final
(red) dots are overlapped in a particular region. Consistent
with Table VII, Fig. 4 verifies BitC’s stability: reachability to
at least one equilibria regardless of the initial conditions.

Table VIII evaluates how different constraint combinations
impact on the performance of BitC in objective values. The
table shows the average, maximum and minimum objective
values at the last generation subject to eight constraint com-
binations listed in Table III. BitC successfully satisfies four

Fig. 4: Three-dimensional Objective Spaces

constraint combinations (CV L,CL, CM and CS). Under CEN

and CDY , BitC fails to satisfy a constraint in each case
although it satisfies three other constraints. And BitC fails to
satisfy all the objectives subject to CV S constraints, since the
constraints setting is very stringent. The best performance is
produced under CS . In most of the cases BitC fails to satisfy
the data yield constraint due to it is a conflicting objective with
other three, and BitC tries to balance the trade off among all
the four objectives. Comparing the results of CS and C∞,
and the results of CS and CV S , Table VIII demonstrates that
BitC satisfies the data yield constraint by trading three other
objectives for a global better performance. Given this result,
CS is used in all successive simulations.

Fig. 5 shows how BitC improves its performance through
generations with 20 BSNs (i.e., 20 patients) and 100 BSNs.
It shows the changes of objective values over generations. All
four constraints are satisfied at the last generation. The two
figures illustrate that BitC improves its objective values subject
to given constraints by balancing the trade-offs among con-
flicting objectives. For example, BitC improves both request
fulfillment and bandwidth consumption through generations
while the two objectives conflict with each other.

Results are qualitatively similar comparing both results with
20 BSNs and 100 BSNs, although BitC yields a slightly lower
performance with a larger number of BSNs. It is harder to
satisfy given constraints in a larger-scale setting. (All four
constraints are satisfied at the last generation.) BitC 100
BSNs’s performance decreases a little respect to 20 BSNs in
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TABLE VIII: Objective Values of BitC-HV under Different
Constraint Combinations

Constraint
Combination fB (Kbps) fE (W) fR(%) fY

C∞
maximum 11.38 195.81 97.7 30.25
Avg 11.07 190.28 97.57 27.33
minimum 10.88 186.96 97.4 25.54

CV L

maximum 12.11 208.96 97.3 17.64
Avg 11.8 203.77 97.27 16.62
minimum 11.53 198.94 96.9 15.64

CL

maximum 12.45 214.72 97.1 14.48
Avg 12.11 209.72 97.04 14.32
minimum 11.87 205.84 97 14.19

CM

maximum 9.13 159.93 97.85 17.53
Avg 9.04 157.98 97.81 16.39
minimum 8.90 155.14 97.7 15.61

CS

maximum 7.69 133.37 98.4 14.86
Avg 7.41 129.26 98.35 14.54
minimum 7.25 126.68 98.3 14.02

CV S

maximum 9.34 161.09 97.9 15.45
Avg 9.24 159.48 97.88 14.95
minimum 9.05 156.81 97.85 14.59

CEN

maximum 12.08 208.63 96.95 16.50
Avg 11.81 204.66 96.94 15.87
minimum 11.58 201.50 96.9 15.00

CDY

maximum 11.89 206.14 97.45 15.41
Avg 11.32 195.72 97.32 14.75
minimum 10.93 188.75 97.2 13.91

bandwidth consumption and energy consumption. It happens
due to the increasing number of BSNs, BitC needs more
bandwidth and energy to satisfy all BSNs needs. And as
consequence the data yield increases, but 20 BSNs reaches
slightly higher request fulfillment because it is easier for BitC
to satisfy greater number of requests for smaller number 20
BSNs rather than 100 BSNs. Fig. 5 demonstrates that BitC
scales well against the number of BSNs.

At the last generation BitC reaches hypervolume value
0.936 and 0.922 for 20 BSNs and 100 BSNs respectively.

Table IX examines how BitC and NSGA-II maintain the
lifetime of BSNs and yield data yield performance with energy
harvesting enabled and disabled. Both BitC and NSGA-II
utilize harvested energy to extend the lifetime of BSNs and in
turn improve data yield performance. With energy harvesting
enabled under a stringent set of constraints (CS), BitC extends
the BSN lifetime by 4.6%. BitC maintains 39% longer lifetime
than NSGA-II. Table IX demonstrates that BitC successfully
leverages energy harvesting to improve its performance.

TABLE IX: Comparison of BitC-HV and NSGA-II in BSN
Lifetime and Data Yield with Energy Harvesting (EH) Enabled
and Disabled

Algorithms Lifetime (hrs) Data yield (fY )

C∞

BitC-HV w/o EH 2.36 21,505
BitC-HV w/ EH 2.47 (+4.66%) 22,507
NSGA-II w/o EH 0.66 4,702
NSGA-II w/ EH 0.69 (+4.55%) 4,916

CS

BitC-HV w/o EH 3.48 16,866
BitC-HV w/ EH 3.64 (+4.60%) 17,641
NSGA-II w/o EH 2.51 31,727
NSGA-II w/ EH 2.62 (+4.38%) 33,117

Fig. 5: 20 BSNs and 100 BSNs performance comparison

VIII. RELATED WORK

This paper extends a prior work of the authors [12]. A
similar BSN configuration problem is considered in [12];
however, this paper extends the problem by incorporating
energy harvesters and investigates how to leverage harvested
energy to improve and balance the performance of BSNs
by adjusting their configuration parameters. This paper also
makes algorithmic extensions; it examines three local search
operators as well as five different schemes to carry out games.
All of these are not studied in [12]. Moreover, this paper
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TABLE X: Notation table

Notation Description Notation Description
B set of BSNs Pi population size
N number of BSNs Q number of local search iterations
M number of sensors fR request fulfillment objective
m sink node fB bandwidth objective
O data transmission interval fE energy consumption objective
p sensing interval fY data yield objective
q sampling rate CR request fulfillment constraint
R data requests CB bandwidth constraint
K set of strategies CE energy consumption constraint
G number of generations CY data yield constraint
Pm mutation rate

conducts larger-scale simulations with up to 100 BSNs while
only 10 BSNs are simulated in [12].

Various architectures and research tools have been proposed
for cloud-integrated sensor networks including BSNs [13]–
[27]. Many of them, [13]–[22], assume three-tier architectures
similar to BitC and investigate publish/subscribe communica-
tion between the edge layer to the cloud layer. Their focus is
placed on push communication. In contrast, BitC investigates
push-pull hybrid communication between the sensor layer
and the cloud layer through the edge layer. Yuriyama et
al. [23], Rollin et al. [24] and Chung et al. [26] propose
a two-tier architecture that consists of the sensor and cloud
layers. The architectures proposed by Yuriyama et al. and
Fortino et al. [27] are similar to BitC in that they leverage the
notion of virtual sensors. However, they do not consider push-
pull (nor publish/subscribe) communication. All the above-
mentioned relevant work do not consider adaptive/stable con-
figurations of sensor networks as BitC does [14]–[27].

Push-pull hybrid communication has been studied in sensor
networks [28]–[31]. However, few efforts exist to study it
between the edge and cloud layers in the context of cloud-
integrated sensor networks. Unlike those relevant work, this
paper formulates a sensor network configuration problem with
cloud-specific objectives as well as the ones in sensor networks
and seeks adaptive/stable solutions for the problem.

Xu et al. propose a three-tier architecture called CEB
(Cloud, Edge and Beneath), which is similar to BitC, and
investigate a mechanism to adapt data transmission rates be-
tween layers according to a given pattern of data requests [32].
CEB runs two optimization algorithms collaboratively: OPT-1
and OPT-2, which optimize data transmission rates between
the cloud and edge layers and between the edge and sensor
layers, respectively. Optimization is carried out on a sensor
node by sensor node basis with respect to a single objective:
energy consumption. In contrast, BitC considers sensing inter-
vals and sampling rates for sensors as well as data transmission
rates for nodes and runs a single algorithm for the entire group
of sensor and sink nodes with respect to multiple conflicting
objectives including energy consumption.

Kumrai [33] proposes a novel incentive mechanism for
participatory sensing based on the evolutionary algorithm. It
considers energy consumption optimization problem similar
to BitC, however it does not consider multi objective perfor-
mance scenario.

SC-iPaaS (Sensor-Cloud Integration Platform as a Service)

is similar to BitC in that both consider three-tier architecture
for cloud-integrated BSNs and caries out a single algorithm
for the entire group of sensor and sink nodes with respect to
multiple conflicting objectives including energy consumption.
SC-iPaaS uses an evolutionary game theoretic algorithm that
retains stability (i.e. reachability to at least one Nash equilib-
ria) as well as adaptability in configuring BSNs while a genetic
algorithm is used in SC-iPaaS [34]. As stochastic global search
algorithms, genetic algorithms lack stability.

IX. CONCLUSION

This paper considers a layered push-pull hybrid commu-
nication for cloud-integrated BSNs and formulates a BSN
configuration problem to seek adaptive and stable solutions.
An evolutionary game theoretic algorithm is used to approach
the problem. A theoretical analysis proves that the proposed
algorithm allows each BSN to operate at an equilibrium
by using an evolutionarily stable configuration strategy in a
deterministic (i.e., stable) manner. Simulation results verify
this theoretical analysis; BSNs seek equilibria to perform
adaptive and evolutionarily stable configuration strategies.
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