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Abstract—This paper considers a multi-tier architecture for
cloud-integrated body sensor networks (BSNs), called Body-in-
the-Cloud (BitC), which is designed for home healthcare with on-
body physiological and activity monitoring sensors. This paper
formulates an optimization problem to integrate BSNs with a
cloud in BitC and approaches the problem with an evolutionary
game theoretic algorithm. BitC allows BSNs to adapt their
configurations (i.e., sensing intervals) to operational conditions
(e.g., data request patterns) with respect to multiple performance
objectives such as resource consumption and data yield. BitC
theoretically guarantees that each BSN performs an evolution-
arily stable configuration strategy, which is an equilibrium
solution under given operational conditions. Simulation results
verify this theoretical analysis; BSNs seek equilibria to perform
adaptive and evolutionarily stable configuration strategies under
dynamic changes of operational conditions. BitC outperforms a
well-known evolutionary multiobjective optimization algorithm,
NSGA-III, in optimality, convergence speed and stability.

Index Terms—Body sensor networks, Cloud computing, Mul-
tiobjective optimization, Evolutionary algorithms

I. INTRODUCTION

This paper studies an architecture, called Body-in-the-Cloud
(BitC), which is designed to integrate body sensor networks
(BSNs) with cloud computing platforms for remotely and
continuously performing physiological and activity monitor-
ing for homebound patients. A BSN is a wireless network
of on/in-body sensors for, for example, heart rate, oxygen
saturation and fall detection. BitC virtualizes per-patient BSNs
onto clouds by taking advantage of cloud computing features
such as scalability in data processing/storage and availability
through multi-regional application deployment.

This paper formulates an optimization problem to integrate
BSNs with a cloud in BitC by adjusting configuration param-
eters (e.g., sensing intervals and data transmission intervals)
and approaches the problem with BitC’s integration optimizer,
which exhibits the following properties:

o Self-optimization: allows BSNs to autonomously adapt and
optimize configurations according to operational conditions
(e.g., data request patterns placed by cloud applications and
availability of resources such as bandwidth and memory)
with respect to performance objectives such as bandwidth
consumption, energy consumption and data yield.

o Self-stabilization: allows BSNs to autonomously seek stable
adaptation decisions by minimizing oscillations (or non-

deterministic inconsistencies) in decision making. Stability

is considered as the reachability to at least one of equilib-

rium solutions in decision making. A lack of stability results
in making inconsistent adaptation decisions in different
optimization attempts/trials with the same problem settings.

BitC is designed to attain the self-optimization and self-
stabilization properties with evolutionary computation (EC)
and evolutionary game theory (EGT), respectively. BitC lever-
ages EC, particularly an evolutionary multiobjective optimiza-
tion algorithm (EMOA), because, in general, EMOAs are
robust problem-independent search methods that seek optimal
solutions (i.e., optimal adaptation decisions) with reasonable
computational costs by maintaining a small ratio of search
coverage to the entire search space [1]. BitC employs EGT as
a means to mathematically formulate adaptive decision making
and theoretically guarantee that each decision making process
converges to an evolutionarily stable equilibrium where a
specific adaptation decision is deterministically made under
a particular set of operational conditions [2].

By integrating EC and EGT, BitC provides an EGT-backed
EMOA that allows BSNs to (1) seek the solutions to optimally
adapt their configurations and (2) operate at equilibria by
making evolutionarily stable adaptation decisions. In BitC,
each BSN maintains a set (or a population) of configuration
strategies (solution candidates), each of which specifies a set
of configuration parameters for that BSN. BitC theoretically
guarantees that, through a series of evolutionary games be-
tween BSN configuration strategies, the population state (i.e.,
the distribution of strategies) converges to an evolutionarily
stable equilibrium regardless of the initial state. (A dominant
strategy in the evolutionarily stable population state is called
an evolutionarily stable strategy (ESS).) Given this theoretical
property, BitC allows each BSN to operate at an equilibrium
by using an ESS as an adaptive configuration strategy.

This paper describes the design of BitC and evaluates
its optimality and stability in making adaptation decisions
under dynamic changes of operational conditions. Simulation
results demonstrate that BitC allows BSNs to seek equilibria
to perform evolutionarily stable configurarion strategies and
adapt their configurations to given operational conditions.
BitC yields 1.37x speedup against one of the state-of-the-



art EMOAs, NSGA-III [3], in convergence speed and main-
tains 32% higher stability (lower oscillations) in performance
across different simulation runs. Under dynamic change of
operational conditions, BitC efficiently reconfigures BSNs by
repeating its optimization process based on the history of its
prior optimization processes.

II. AN ARCHITECTURAL OVERVIEW OF BITC

BitC consists of the sensor, edge and cloud layers (Fig. 1).

Sensor Layer: operates one or more BSNs on a per-
patient basis. Each BSN contains one or more sensor nodes,
each of which is equipped with different types of sensors.
Sensor nodes are wirelessly connected to a dedicated per-
patient device or a patient’s computer (e.g., a smartphone or
tablet machine) that serves as a sink node. This paper assumes
the star topology among a sink node and sensor nodes. Each
sensor node is assumed to be battery-operated. (It has limited
energy supply.) It maintains a sensing interval and a sampling
rate for each sensor attached to it. Upon a sensor reading, it
stores collected data in its own memory space. Given a data
transmission interval, it periodically flushes all data stored in
its memory space and transmits the data to a sink node.

Edge Layer: consists of sink nodes, each of which partic-
ipates in a certain BSN and receives sensor data periodically
from sensor nodes in the BSN. A sink node stores incoming
sensor data in its memory space and periodically flushes stored
data to transmit them to the cloud layer. Different sink nodes
have different data transmission intervals. A sink node’s data
transmission interval can be different from the ones of sensor
nodes in the same BSN. Sink nodes are assumed to have
limited energy supplies through batteries.

Cloud layer: operates on a cloud(s) that host virtual
sensors, which are virtualized counterparts (or software coun-
terparts) of physical sensors in BSNs. Virtual sensors collect
sensor data from sink nodes in the edge layer and store
those data for future use. The cloud layer also hosts various
applications that obtain sensor data from virtual sensors and
aid medical staff (e.g., clinicians, hospital/visiting nurses and
caregivers) to monitor patients and share sensor data for
clinical observation and intervention.

BitC performs push-pull hybrid communication between its
three layers. Each sensor node periodically collects data from
a sensor(s) attached to it based on sensor-specific sensing
intervals and sampling rates and transmits (or pushes) those
collected data to a sink node. The sink node in turn forwards
(or pushes) incoming sensor data periodically to virtual sensors
in a cloud(s). Cloud applications request sensor data to virtual
sensors. If a virtual sensor has requested data, it returns that
data. Otherwise, it issues a pull request to a sink node. If
the sink node has the requested data in its memory space, it
returns that data. Otherwise, it issues another pull request to
a sensor node that is responsible for the requested data. Upon
receiving a pull request, the sensor node returns the requested
data if it has the data in its memory. Otherwise, it returns an
error message to a cloud application through a sink node.

While push communication carries out a one-way upstream
travel of sensor data, pull communication incurs a round

trip for requesting sensor data and receiving that data (or
an error message). This push-pull communication is intended
to make as much sensor data as possible available for cloud
applications by taking advantage of push communication while
allowing virtual sensors to pull any missing or extra data
anytime in an on-demand manner. For example, when an
anomaly is found in pushed sensor data, medical staff may pull
extra data in a higher temporal resolution to better understand a
patient’s medical condition. Given a sufficient amount of data,
they may perform clinical intervention, order clinical cares,
dispatch ambulances or notify family members of patients.
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Fig. 1: An Architectural Overview of BitC
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ITI. BSN CONFIGURATION PROBLEM IN BITC
This section describes a BSN configuration problem for
which BitC seeks equilibrium solutions. Each BSN config-
uration consists of four types of parameters (i.e., decision
variables): sensing intervals and sampling rates for sensors as
well as data transmission intervals for sensor and sink nodes.

The problem is stated with the following symbols.

e B={by1,ba,...,b;,...,by} denotes the set of N BSNs, each
of which operates for a patient.

o Each BSN b; consists of a sink node (denoted by m;) and M
sensor nodes: b; = {hi1, hi, ..., hij, ..., hias }. Each sensor
node h;; has L sensors: h;; = {sijl,sij27 cens Siky oees Sz'jL}-
0ijk is the data transmission interval for h;; to transmit
sensor data collected from s;;. p;;1 and g; ;i are the sensing
interval and sampling rate for s;;;. Sampling rate is defined
as the number of sensor data samples collected in a unit
time. Each sensor node stores collected sensor data in
its memory space until its next push transmission. If the
memory becomes full, it performs FIFO (First-In-First-Out)
data replacement. In a push transmission, it flushes and
sends out all data stored in its memory.

e On,, denotes the data transmission interval for m,; to forward
(or push) sensor data incoming from sensor nodes in b; In
between two push transmissions, m; stores sensor data from
b; in its memory. It performs FIFO data replacement if the
memory becomes full. In a push transmission, it flushes and
sends out all data stored in the memory.

. Rijk: = {TijklaTiij; N "'7rijk\Ri,~k|} denotes the set
of sensor data requests that cloud applications issue to the
virtual counterpart of s;;; (s;;;,) during the time period of W
in the past. Each request r;;, is characterized by its time
stamp (Z;x,) and time window (wj;,). It retrieves all sensor
data available in the time interval [;x, — Wijkr, tijer]. If



s;jk has at least one data in the interval, it returns those

data; otherwise, it issues a pull request to m;.

. R;’Jlk C Ryji denotes the set of sensor data requests for
which a virtual sensor s, has no data. |R}%,| indicates
the number of pull requests that s; ;. issues to m;. In other
words, R;jx \ R?}k is the set of sensor data requests that

s;;, fulfills regarding sy

. RZ i © Ril, © Riji denotes the set of sensor data requests
for which m; has no data. |R;;,| indicates the number of
pull requests that m; issues to h;; for collecting data from
Sijk- R;’;k \ Rfjk is the set of sensor data requests that m;
fulfills regarding s; ;.

This paper considers four performance objectives: band-
width consumption between the edge and cloud layers (fp),
energy consumption of sensor and sink nodes (fg), request
fulfillment for cloud applications (fr) and data yield for cloud
applications (fp). The first two objectives are to be minimized
while the others are to be maximized.

Bandwidth consumption (fp) is defined as the total amount
of data transmitted per a unit time between the edge and cloud
layers. This objective impacts the payment for bandwidth
consumption based on a cloud operator’s pay-per-use billing
scheme (Eq. 1). It also impacts the lifetime of sink nodes.
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The first and second terms indicate the bandwidth consump-
tion by one-way push communication from the edge layer to
the cloud layer and two-way pull communication between the
cloud and edge layers, respectively. c;;; denotes the number
of sensor data that s;;;, generates and sink nodes in turn
push to the cloud layer during W. d;;; denotes the size of
each sensor data (in bits) that s;;, generates. It is currently
computed as: g;;3 X 16 bits/sample. ¢;;x, denotes the number
of sensor data that a pull request r € R’?k can collect from
sink nodes (@i xr = |R”k \ R} k|) d, is the size of a pull
request transmitted from the cloud layer to the edge layer.
The third term in Eq. 1 indicates the bandwidth consumption
by the error messages that sensors generate because they fail
to fulfill pull requests. 7;;%, is the number of sensor data that
a pull request r € R}, can collect from sensor nodes. e, is
the size of an error message.

Energy consumption (fg) is defined as the total power
consumption of sensor and sink nodes for data transmissions
during W (Eq. 2). It impacts the lifetime of sensor and
sink nodes. The first and second terms indicate the energy
consumption by one-way push communication from the sensor
layer to the edge layer and two-way pull communication
between the edge and sensor layers, respectively. e; denotes
the amount of energy (in Watts) that a sensor or sink node
consumes to transmit a single bit of data. d/. denotes the size of
a pull request from the edge layer to the sensor layer. The third
and fourth terms indicate the energy consumption by push

and pull communication between the edge and cloud layer,
respectively. The fifth term indicates the energy consumption
for transmitting error messages on sensor and sink nodes.
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Request fulfillment (fr) is defined as the ratio of the number
of fulfilled requests over the total number of requests:
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Ig,,, =1 if arequest r € R;j; obtains at least one sensor
data; otherwise, I Rije = =0.

Data yield (fy) is defined as the total amount of data that
cloud applications gather for their users (Eq. 4). It impacts the
informedness and situation awareness of application users.

N M L IRkl N M L IRl

Fr=d20"30 00 ket D D> Nigkr e @

i=1j=1k=1 r=1 i=1j=1k=1 r=1

BitC considers four constraints. The first constraint (Cg) is
the upper limit for energy consumption: fr < C'g. A violation
for the constraint (gg) is computed as gp = Ip X (fg — CE)
where I =1 if fg > Cg; otherwise I = 0.

The second constraint (Cy) is the lower limit for data yield:
fy > Cy. A constraint violation (gy) is computed as gy =
Iy x (Cy — fy) where Iy = 1if fy < Cy; otherwise Iy = 0.

The third constraint (Cg) is the lower limit for request
fulfillment: fr > Cpgr. The constraint violation in request
fulfillment (gr) is computed as gr = Ig X (Cr — fr) where
Ir =1 if fgr < Cg; otherwise Ir = 0.

The fourth constraint (C'g) is the upper limit for bandwidth
consumption: fp < Cp. A violation for this constraint (gg) is
computed as gg = Ig x (fp—Cpg) where Iz = 1if fg > Cp;
otherwise Ig = 0.

IV. BACKGROUND: EVOLUTIONARY GAME THEORY

In a conventional game, the objective of a player is to
choose a strategy that maximizes its payoff in a single game. In
contrast, evolutionary games are played repeatedly by players
randomly drawn from a population [2]. This section overviews
key elements in evolutionary games: evolutionarily stable
strategies (ESS) and replicator dynamics.

A. Evolutionarily Stable Strategies (ESS)

Suppose all players in the initial population are programmed
to play a certain (incumbent) strategy k. Then, let a small
population share of players, x € (0,1), mutate and play a
different (mutant) strategy ¢. When a player is drawn for a
game, the probabilities that its opponent plays k and ¢ are
1 — 2 and =z, respectively. Thus, the expected payoffs for the
player to play & and ¢ are denoted as U(k,xz¢+ (1 —x)k) and
U, 2t + (1 — x)k), respectively.



Definition 1. A strategy k is said to be evolutionarily stable
if, for every strategy { # k, a certain T € (0,1) exists, such
that the inequality
Uk, e+ (1 —x)k) >UW, 2+ (1—2)k) (5)

holds for all x € (0, ).

If the payoff function is linear, Equation 5 derives:

(1—2)U(k, k) +2U(k, L) > (1 —2)Ul, k) +2U (L, )
If = is close to zero, Equation 6 derives either

Uk, k) > Ul k) or Uk, k) = U(L, k) and U(k,€) > U((,£)

This indicates that a player associated with the strategy k
gains a higher payoff than the ones associated with the other
strategies. Therefore, no players can benefit by changing their
strategies from k to the others. This means that an ESS is
a solution on a Nash equilibrium. An ESS is a strategy that
cannot be invaded by any alternative (mutant) strategies that

have lower population shares.
B. Replicator Dynamics

The replicator dynamics describes how population shares
associated with different strategies evolve over time. Let
Ak(t) > 0 be the number of players who play the strategy
k € K, where K is the set of available strategies. The
total population of players is given by A(¢) = > kISl)‘k(t)'
Let x(t) = Ag(t)/A(t) be the population share of players
who play k at time ¢. The population state is defined by
X(t) = [z1(t), - ,zk(t), -+ ,zx(t)]. Given X, the expected
payoff of playing k is denoted by U(k, X). The popula-
tion’s average payoff, which is same as the payoff of a
player drawn randomly from the population, is denoted by
UX,X)=>" L}i‘lxk -U(k, X). In the replicator dynamics,
the dynamics of the population share xj is described as
& = xp-[U(k, X)—U(X, X)]. Players increase (or decrease)
their population shares when their payoffs are higher (or lower)
than the population’s average payoff.

Theorem 1. If a strategy k is strictly dominated, then

A strategy is said to be strictly dominant if its payoff is
strictly higher than any opponents. As its population share
grows, it dominates the population over time. Conversely,
a strategy is said to be strictly dominated if its payoff is
lower than that of a strictly dominant strategy. Thus, strictly
dominated strategies disappear in the population over time.

There is a close connection between Nash equilibria and the
steady states in the replicator dynamics, in which the popula-
tion shares do not change over time. Since no players change
their strategies on Nash equilibria, every Nash equilibrium
is a steady state in the replicator dynamics. As described in
Section IV-A, an ESS is a solution on a Nash equilibrium.
Thus, an ESS is a solution at a steady state in the replicator
dynamics. In other words, an ESS is the strictly dominant
strategy in the population on a steady state.

BitC maintains a population of configuration strategies
for each BSN. In each population, strategies are randomly
drawn to play games repeatedly until the population reaches a
steady state. Then, BitC configures a BSN based on a strictly
dominant strategy as an ESS.

V. BODY-IN-THE-CLOUD
BitC maintains N populations, {P;,Ps,..., Py}, for N
BSNs and performs games among strategies in each popu-
lation. Each strategy s(b;) specifies a particular configuration
for a BSN b; using four types of parameters: sensing intervals
and sampling rates for sensors (p;; and g¢;;) as well as data
transmission intervals for sink and sensor nodes (0,,, and 0;;).

s(bi) = U (0m;»0ij,Pijqij) 1 <i< N (6)
jel.M

Algorithm 1 shows how BitC seeks an evolutionarily stable
configuration strategy for each BSN through evolutionary
games. In the O-th generation, strategies are randomly gen-
erated for each of N populations {P;,Ps,...,Px} (Line 2).
Those strategies may or may not be feasible. Note that a
strategy is said to be feasible if it violates none of four
constraints described in Section III.

In each generation (g), a series of games are carried out on
every population (Lines 4 to 28). A single game randomly
chooses a pair of strategies (s; and s3) and distinguishes
them to the winner and the loser with respect to performance
objectives described in Section III (Lines 7 to 9). The winner
is replicated to increase its population share and mutated with
polynomial mutation (Lines 10 to 18) [4]. Mutation randomly
chooses a parameter (or parameters) in a given strategy with a
certain mutation rate P,, and alters its/their value(s) at random
(Lines 12 to 14). Then a game is performed between loser
and the mutated winner (Line 16). Elitism concept is applied
here to select the best two among strategies (winner, loser
and mutated winner), and the worst strategy disappears in the
population.

Once all strategies play games in the population, BitC
identifies a feasible strategy whose population share () is the
highest and determines it as a dominant strategy (d;) (Lines 20
to 24). After a dominant strategy is determined, BitC performs
local search to improve the dominant strategy (Line 26). In
the end, BitC configures a BSN with the parameters contained
in the dominant strategy (Line 27).

A game is carried out based on the superior-inferior re-
lationship between given two strategies and their feasibility
(c.f. performGame () in Algorithm 1). If a feasible strategy
and an infeasible strategy participate in a game, the feasible
one always wins over its opponent. If both strategies are
feasible, they are compared with the hypervolume metric,
which measures the volume that a given strategy s dominates
in the objective space [5]:

HV(s)=A (U{x’|s =’ - xT}) (7)

A denotes the Lebesgue measure. x,. is the reference point
placed in the objective space. The notion of dominance (>) is
defined as follows. A strategy s; is said to dominate another
strategy so (s1 > s2) if both of the following conditions hold:

e 51’s objective values are superior than, or equal to, s2’s

in all objectives.

e 51’s objective values are superior than ss’s in at least one

objectives.



A higher hypervolume means that a strategy is more opti-
mal. Given two strategies, the one with a higher hypervolume
value wins a game. If both have the same hypervolume value,
the winner is randomly selected.

If both strategies are infeasible in a game, they are compared
based on their constraint violation. An infeasible strategy s;
wins a game over another infeasible strategy ss if both of the
following conditions hold:

e S1’s constraint violation is lower than, or equal to, ss’s
in all constraints.

e S1’s constraint violation is lower than s5’s in at least one
constraints.

Algorithm 1 Evolutionary Process in BitC

1: g=0
2: Randomly generate the initial N populations for N BSNs: P =
{P1,P2,....,Pn}
3: while g < Gpagz do
4: for each population P; randomly selected from P do
5: Pl 0
6: for j =1 to |P;|/2 do
7: s1 < randomlySelect(P;)
8: s2 < randomlySelect(P;)
9: {winner,loser} <+ performGame(si, s2)
10: replica < replicate(winner)
11: for each parameter v in replica do
12: if random() < P, then
13: replica < mutate(replica, v)
14: end if
15: end for
16: winner’ < performGame(loser, replica)
17: Pi\ {s1,s2}
18: P! U {winner, winner’}
19: end for
20: P; P!
21: d; + argmazscp,Ts
22: while d; is infeasible do
23: P\ {d:}
24: d; < argmax;cp,Ts
25: end while
26: Configure a BSN in question based on d;.
27: end for

28: g=g+1
29: end while

VI. STABILITY ANALYSIS

This section analyzes BitC’s stability (i.e., reachability to at
least one of Nash equilibrium) by proving the state of each
population converges to an evolutionarily stable equillibrium.
The proof consists of three steps: (1) designing a set of differ-
ential equations that describe the dynamics of the population
state, (2) proving an strategy selection process has equilibria,
and (3) proving the the equilibria are asymptotically (or
evolutionarily) stable. The proof uses the following symbols:

« S denotes the set of available strategies. S* denotes a set
of strategies that appear in the population.

o X(t) = {w1(t),22(t), - ,x)5-|(t)} denotes a population
state at time ¢ where z4(¢) is the population share of a
strategy s € S. Y ses+(zs) = 1.

« F denotes the fitness of a strategy s. It is a relative value
that is determined in a game against an opponent based
on the dominance relationship between them. The winner
of a game earns a higher fitness than the loser.

o D = zp-¢(Fs—Fy) denotes the probability that a strategy
s is replicated by winning a game against another strategy
k. ¢(Fs — Fy) is the probability that the fitness of s is
higher than that of k.

The dynamics of the population share of s is described as:

> {wspp — wept}

kES™ ksts
= 25 Y. w{d(Fs—F)—o(Fr—F)}  ®
Note that if s iskse'[%*éltcl?ﬁyS dominated, x4(t);—o00 — 0.

s =

Theorem 2. The state of a population converges to an
equilibrium.

Proof. 1t is true that different strategies have different fitness
values. In other words, only one strategy has the highest fitness
among others. Given Theorem 1, assuming that F; > Fy >
--+ > F|g=|, the population state converges to an equilibrium:
X()tso0 = {@a(t), 22(t), -+, 215+ (t) }rsoo
={1,0,---,0}. O

Theorem 3. The equilibrium found in Theorem 2 is asymp-
totically stable.
Proof. At the equilibrium X = {1,0,---,0}, a set of dif-
ferential equations can be downsized by substituting x; =
171327"'717‘5*‘ Y
Zs = zs[es1(1 — zs) + Z Zi* Csi], S, k=2, ...
1=2,1#£s
where ¢y = (b(Fs - Fk) - ¢(Fk - FS) and Z(t) =
{#z2(t), 23(t),- -+ , 25+|(t)} denotes the corresponding down-
sized population state. Given Theorem 1, Z; ;o = Z¢g =
{0,0,---,0} of (|S*| — 1)-dimension.
If all Eigenvalues of Jaccobian matrix of Z(¢) has negative
real parts, Z,, is asymptotically stable. The Jaccobian matrix

157 ()

J’s elements are described as follows where s, k = 2, ..., |S*|.
g {azs} | Ozslesi(1—z) + ZL*:;"#S Z; * Csi)
sk 8Zk \Z:qu - 8zk
|Z=Zeq
Therefore, J is given as follows, where ca1,¢31,+* ,¢|5+)1
are J’s Eigenvalues.
c21 0 cee 0
0 €31 v 0
J= . 1)
0 0 C\S*\l
cs1 = —¢(F1 — Fy) < 0 for all s; therefore, Z., =
{0,0,---,0} is asymptotically stable. O

VII. SIMULATION EVALUATION

This section evaluates BitC through simulations and studies
how BitC adapts BSN configurations to given operational con-
ditions (e.g., data request patterns placed by cloud applications
and memory space availability in sink and sensor nodes).

Simulations are configured with the parameters shown in
Table I. Data requests are uniformly distributed over virtual
sensors. A time window is randomly set for each request to a
sensor. Mutation rate is set to 1/V where V is the number
of parameters in a strategy. Every simulation result is the
average with 10 independent simulation runs. Comparative



performance study is conducted to compare BitC with NSGA-
III, which is one of the state-of-the-art EMOAs [3]. BitC and
NSGA-III use the same parameter settings shown in Table I.
All other NSGA-III settings are borrowed from [3].

TABLE I: Simulation Settings

[ Parameter i Value |
Duration of a simulation (W) 10,800 secs (3 hrs)
Number of simulation runs 10
Number of BSNs (V) 100
Number of sensor nodes in a BSN (M) 4
Memory space in a sensor node 2 GB
Memory space in a sink node 16 GB
Total number of data requests from cloud apps 1,000
Size of a data request (d, and d..) 100 bytes
Size of an error message (e,) 250 bytes
Energy consumption for a single bit of data (e¢) 0.001 Watt

Blood pressure request time window
Acelerometer request time window
ECG request time window

[0, 1000 secs]
[0, 1800 secs]
[0, 600 secs]

Number of generations (Gyaz) 300
Population size ([P;]) 100
Mutation rate (Pp,) v

BitC yields a single set of objective values with dominant
strategies at each generation while NSGA-III yields 100 sets
of objective values with 100 solutions at each generation.
Therefore, in Table II, the BitC solution is evaluated against
the NSGA-III solution that is closest (in the Euclidean dis-
tance) in the objective space. Table II shows the BitC solution
is non-dominated (i.e., tie) with the NSGA-III solution with
respect to four objectives through the notion of dominance.
BitC outperforms NSGA-III in three objectives while NSGA-
III outperforms BitC in data yield. BitC yields a slightly
higher (1.5% higher) hypervolume (HV) than NSGA-III (c.f.
Eq. 7). This result demonstrates that BitC slightly outper-
forms NSGA-III. Table II also examines the distances in the
normalized objective space from the Utopian point, (0, O,
0, 0), to the BitC and NSGA-III solutions. Euclidean and
Manhattan distances are used as metrics. In both metrics, a
shorter distance means a given solution is closer to the Utopian
point (i.e., more optimal). BitC is closer to the Utopian point
than NSGA-III by 35% and 11% in Euclidean and Manhattan
distances, respectively.

TABLE II: Comparison of BitC-HV and NSGA-III

[ Objective [[ BitC-HV | NSGA-II ]
Request Fulfillment: fr (%) 98.47 98
Bandwidth: fp (Kbps) 7.46 9.96
Energy consumption: fr (Watts) 128.86 172.89
Data Yield: fy 28.20 54.88
[ Hypervolume (HV) [[ 09394 T 0924 ]
Euclidean distance to the Utopian point 0.349 0.538
Manbhattan distance to the Utopian point 1.24 1.40
# of generations to reach HV=0.924 97 133
# of generations to reach HV=0.939 283 —

The bottom two rows of Table II show BitC’s and NSGA-
IIT’s convergence speed. NSGA-III requires 133 generations
to reach the HV value of 0.924, which is the highest HV
that NSGA-III yields. In contrast, BitC spends 97 generations
to reach the HV value. It maintains a 1.37x speedup against
NSGA-III in convergence speed.

Table III shows the variance of objective values that BitC
and NSGA-III yield in 10 simulation runs. A lower variance
means higher stability (i.e., lower oscillations) in objective
value results among simulation runs. BitC maintains signif-
icantly higher stability than NSGA-III in all objectives. On
average, BitC’s stability is 32.09% higher than NSGA-IIT’s.
This result exhibits BitC’s stability property (i.e., reachability
to at least one equillibira), which NSGA-III does not have.

TABLE III: Stability of Objective Values in BitC-HV and NSGA-III
[[ BitC-HV [ NSGA-III [ Diff (%) |
0.04 0.05 20%
0.19 0.28 32.14%
Energy Consumption: fg 0.33 0.51 35.29%
Data Yield: fy 0.49 0.83 40.96%

[ Average Difference (%) || — [ — [ 32.09% |

[ Objectives

Request Fulfillment: fr
Bandwidth: fp
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Fig. 2 shows two three-dimensional objective spaces that
plot a set of dominant strategies obtained from individual pop-
ulations at each generation. Each blue dot indicates the average
objective values that dominant strategies yield at a particular
generation in 10 simulation runs. The trajectory of blue dots
illustrates a path through which strategies evolve and improve
objective values. Gray and red dots represent 10 different
sets of objective values at the first and last generation in 10
simulation runs, respectively. While initial (gray) dots disperse
(because the initial strategies are generated at random), final
(red) dots are overlapped in a particular region. Consistent
with Table III, Fig. 2 verifies BitC’s stability: reachability to
at least one equilibria regardless of the initial conditions.

Fig. 3 shows how BitC reconfigures BSNs when operational
conditions changes. Upon a dynamic change, BitC reruns its
optimization process by mutating the dominant strategies ob-
tained in the previous run (c.f. Lines 11 to 15 in Algorithm 1)
and using mutants in the initial population. Fig. 3a shows how
the number of those mutants impacts the HV performance
when the number of patients and the total number of data
requests increases by 10%. 0% means all the initial strategies
are randomly generated. 100% means all of them are mutants.
50% means that a half of them are mutants and the other
half is randomly generated. In the 50% case, BitC converges
faster and reaches a higher HV compared to the other two
cases. The HV in the 100% case is lower than that in the
0% case, although convergence is the fastest in the 100%
case. The rest of the simulation results are obtained with 50%.
Fig. 3a demonstrates that BitC effectively leverages the history
of its prior optimization processes to gain improvements in
optimality and convergence speed.

Figs. 3b and 3c illustrate how the magnitude of changes
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Fig. 3: Hypervolume Performance subject to Dynamic Changes in Operational Conditions

in operational conditions impacts the performance of BitC’s
history-based optimization. In Fig. 3b, the number of patients
and the total number of data requests are increased by 10%,
30% and 50%. The total number of requests changes in Fig. 3c.
As shown in Figs. 3b and 3c, BitC’s history-based optimization
is effective as far as the changes in operational conditions are
not significant.

VIII. RELATED WORK

Various architectures and research tools have been proposed
for cloud-integrated sensor networks including BSNs [6]-[14].
Many of them, [6]-[10], assume three-tier architectures sim-
ilar to BitC and investigate publish/subscribe communication
between the edge layer to the cloud layer. Their focus is
placed on push communication. In contrast, BitC investigates
push-pull hybrid communication between the sensor layer
and the cloud layer through the edge layer. Yuriyama et
al. [11], Rollin et al. [12] and Chung et al. [13] propose
a two-tier architecture that consists of the sensor and cloud
layers. The architectures proposed by Yuriyama et al. and
Fortino et al. [14] are similar to BitC in that they leverage the
notion of virtual sensors. However, they do not consider push-
pull (nor publish/subscribe) communication. All the above-
mentioned relevant work do not consider adaptive/stable con-
figurations of sensor networks as BitC does [6]-[14].

Xu et al. propose a three-tier architecture called CEB
(Cloud, Edge and Beneath), which is similar to BitC, and
investigate a mechanism to adapt data transmission rates be-
tween layers according to a given pattern of data requests [15].
CEB runs two optimization algorithms collaboratively: OPT-1
and OPT-2, which optimize data transmission rates between
the cloud and edge layers and between the edge and sensor
layers, respectively. Optimization is carried out on a sensor
node by sensor node basis with respect to a single objective:
energy consumption. In contrast, BitC considers sensing inter-
vals and sampling rates for sensors as well as data transmission
rates for nodes and runs a single algorithm for the entire group
of sensor and sink nodes with respect to multiple conflicting
objectives including energy consumption.

IX. CONCLUSION
This paper considers a layered push-pull hybrid communi-
cation for cloud-integrated BSNs and formulates a problem to
integrate BSNs with a cloud. An evolutionary game theoretic
algorithm is used to approach the problem. A theoretical

analysis proves that the proposed algorithm allows each BSN
to operate at an equilibrium by using an evolutionarily stable
configuration strategy. Simulation results verify this theoretical
analysis; BSNs seek equilibria to perform adaptive and evolu-
tionarily stable configuration strategies under dynamic changes
of operational conditions. BitC outperforms a well-known
evolutionary multiobjective optimization algorithm, NSGA-III,
in optimality, convergence speed and stability.
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