
Body-in-the-Cloud: Towards Visualization-driven
Optimization and Stabilization for

Cloud-integrated Body Area Networks

Yi Cheng-Ren
Dept. of Computer Science
University of Massachusetts
Boston, Boston, MA, USA
yiren001@cs.umb.edu

Junichi Suzuki
Dept. of Computer Science
University of Massachusetts
Boston, Boston, MA, USA

jxs@cs.umb.edu

Ryuichi Hosoya
OGIS International, Inc.

San Mateo, CA 94404, USA
hosoya@ogis-international.com

ABSTRACT
Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; C.2.4 [Computer-
Communication Networks]: Distributed Systems—Dis-
tributed applications

General Terms
Algorithms, Management, Performance

Keywords
Cloud computing, software-defined networks, body sensor
networks, multiobjective optimization, evolutionary game
theory

1. INTRODUCTION
An emerging era of the Internet of Things faces manage-

ability and configurability issues due to accelerated prolifer-
ation of pervasive sensor and actuation devices. This paper
addresses these issues in Body-in-the-Cloud (BitC), which is
a tiered architecture for cloud-integrated body area networks
(BSNs). BitC is designed to facilitate biomedical and activ-
ity monitoring in home healthcare with two types of sensor
networks (SNs): (1) body sensor networks (BSNs), each of
which is a per-patient wireless network of on/in-body sen-
sors such as ECG and accelerometers and (2) ambient sensor
networks (ASNs), which wirelessly connect ambient sensors
such as RFID sensors attached on the wall and foot pressure
measurement mats on the floor.

BitC approaches manageability and configurability issues
with the notion of software-defined sensor networks (SD-
SNs) and a set of optimization algorithms, respectively. An
SDBSN is a network of virtual sensors, which are virtualized
counterparts (or software counterparts) of physical sensors
in a cloud computing platform(s). It represents physical SNs
in the cloud and allows human administrators and cloud-
based services to configure, deploy, optimize and monitor

.

SNs. BitC’s optimization algorithms allow SNs to adapt
and stabilize their configurations (e.g., sampling rates and
data transmission intervals) according to operational condi-
tions (e.g., data request patterns). This paper describes the
design and implementation of BitC and evaluates it through
simulation and empirical studies.

2. RELATED WORK
To address the quality of life and economic issues in medi-

cal center and home healthcare, various research efforts have
been made for developing body sensor networks (BSNs), each
of which is a per-patient wireless network of on/in-body sen-
sors. For example, heart rate, blood pressure, oxygen sat-
uration, body temperature respiratory rate, blood coagula-
tion, galvanic skin response and fall detection [1,3,4]. BSNs
can be used to remotely and continuously perform physio-
logical and physical activities monitoring for patients. In
another hand ASNs are able to provide not just physical ac-
tivities monitoring, but also geographical location detection
services by using RFID sensors.

This paper envisions putting together BSNs and ASNs to
obtain an accurate and reliable location based healthcare
monitoring with cloud-integrated system BitC, which virtu-
alize on/in-body sensors in the clouds. BitC is seamlessly in-
tegrated with cloud for patients healthcare by taking advan-
tage of cloud computing features such as pay-per-use billing
and scalability in data storage and processing. And also
availability through multi-regional application deployment
and accessibility through universal communication protocols
(e.g., MQTT, HTTP/REST).

3. DESIGN AND IMPLEMENTATION
BitC consists of three layers, sensor, edge and cloud (Fig. 2).

The sensor layer is a collection of sensor nodes in BSNs
or/and ASNs. Each BSN or ASN operates one or more
sensor nodes, each of which is equipped with one or several
sensor(s). In BSN sensor nodes are wirelessly connected to
a dedicated per-patient device or a patient’s computer (e.g.,
smartphone or tablet machine) that serves as a sink node.
And in ASN sensors nodes are wirelessly connected to a
central computer (e.g., local server machine) which acts as
a sink node.

The edge layer consists of sink nodes, which collect sen-
sor data from sensor nodes in BSNs and ASNs. The cloud
layer consists of cloud environments that host virtual sen-
sors, which are virtualized counterparts (or software coun-

terparts) of physical sensors in BSNs and ASNs. Virtual
sensors collect sensor data from sink nodes in the edge layer
and store those data for future use. The cloud layer also
hosts various applications that obtain sensor data from vir-
tual sensors and aid medical staff (e.g., clinicians, hospi-
tal/visiting nurses and caregivers) to monitor patients and
share sensor data for clinical observation and intervention.

BitC performs push-pull hybrid communication between
its three layers. Each sensor node periodically collects data
from a sensor(s) attached to it based on sensor-specific sens-
ing intervals and sampling rates and transmits (or pushes)
those collected data to a sink node. The sink node in turn
forwards (or pushes) incoming sensor data periodically to
virtual sensors in clouds. When a virtual sensor does not
have sensor data that a cloud application requires, it ob-
tains (or pulls) that data from a sink node or a sensor node.
This push-pull communication is intended to make as much
sensor data as possible available for cloud applications by
taking advantage of push communication while allowing vir-
tual sensors to pull any missing or extra data anytime in
an on-demand manner. For example, when an anomaly is
found in pushed sensor data, medical staff may pull extra
data in a higher temporal resolution to better understand
a patient’s medical condition. Given a sufficient amount of
data, they may perform clinical intervention, order clinical
cares, dispatch ambulances or notify family members of pa-
tients.

BitC configures both BSNs and ASNs by tuning sensing
intervals and sampling rates for sensors as well as data trans-
mission intervals for sensor and sink nodes. Two properties
are considered in configuring BSNs and ASNs:

• Adaptability: Adjusting BSN configurations accord-
ing to operational conditions (e.g., data request pat-
terns placed by cloud applications and availability of
resources such as bandwidth and memory) with re-
spect to performance objectives such as bandwidth
consumption, energy consumption and data yield.

• Stability: Minimizing oscillations (non-deterministic in-
consistencies) in making adaptation decisions.

BitC leverages an evolutionary game theoretic approach to
configure BSNs and ASNs. Each BSN and ASN maintains
a set (or a population) of configuration strategies. BitC
theoretically guarantees that, through a series of evolution-
ary games between configuration strategies, the population
state (i.e., the distribution of strategies) converges to an evo-
lutionarily stable equilibrium regardless of the initial state.
(A dominant strategy in the evolutionarily stable population
state is called an evolutionarily stable strategy.) In this state,
no other strategies except an evolutionarily stable strategy
can dominate the population. Given this theoretical prop-
erty, BitC allows to operate at equilibria by using an evolu-
tionarily stable strategy to configure BSNs and ASNs in a
deterministic (i.e., stable) manner.

Simulation results verify this theoretical analysis. BSNs
and ASNs seek equilibria to perform adaptive and evolu-
tionarily stable configuration strategies. This paper evalu-
ates BitC algorithm and to compares it with NSGA-II and
NSGA-III, two well-known multiobjective genetic algorithm.
BitC outperforms these two existing well-known genetic al-
gorithm in the quality, stability and computational cost in
configuring BSNs and ASNs.

In real experiment settings, the algorithm runs in the
cloud server and it could be triggered by changes happened

in the BitC environment such as registration of new patients,
patients discharged from hospital or recovered from rehabil-
itation, changes in the requests pattern. If one of these en-
vironment changes occurs, then BitC reruns the algorithm
in the back end system to adapt the new environment and
getting the newest configuration parameters as result. Later
these new configuration parameters are propagated towards
each BSN and ASN’s sink node (i.e. smart phone, tablets, lo-
cal server, ...) to configure sensor nodes and sensors. There
are four type of parameters to configure each BSN or ASN.

• Sink node transmission time interval: It specifies the
time interval that a sink node pushes the stored data
to the cloud layer.

• Sensor node transmission time interval: It refers to the
interval of time that a sensor node pushes the sensing
data to the edge layer (Sink node).

• Sensor sensing time interval: It is the time interval
that a sensor collects the sensing samples.

• Sensor sampling rate: It indicates the number of sam-
ples collected every time by a sensor.

To maintain a high accuracy, each sample is encoded using
16 bits (2 bytes). Each time the client side device (sink node
devices) is turned on, it will automatically issue a request to
the back end server (cloud server) to get the latest configu-
ration parameters and it will keep doing this in period of one
hour to update its parameters. Users can get their updated
BSNs configuration parameter manually by performing ac-
tions like pressing button or simply swiping down the touch
screen. Users also have the full control of starting and stop-
ping their own BSNs sensing and communication system.
Up on sensing started, they are able to monitor their health
status (i.e. heart rate, blood pressure, etc ...) and physical
activities in their own sink node devices.

Sensors collect the data periodically based on their own
sensing time interval and sampling rate. After the sensing
data are transmitted to the sink node based on the sen-
sor node transmission interval and then are pushed to the
cloud server followed the interval of time configured in the
sink node. Communication protocol between Edge layer and
Cloud layer could be HTTP or/and MQTT, depending on
the sink node types. In case of BSNs, sink nodes are smart
phones or tablets and MQTT would handle to publish and to
subscribe sensors data to the cloud. MQTT is designed to be
battery and bandwidth efficient which making it well suited
to be used in environments like smart phone and tablets.
When it comes to ASNs, HTTP would be used to handle
data transferring between the local server and cloud server
(Fig. 1).

Figure 1: BitC communication diagram

Each sensor has its own ID to identify its type, owner, and
the facilities where it belongs. The sensor ID is composed

by four fields separated with dot. The first two characters
identifies the facilities entity, followed by three digits which
is the BSNs index number and then the next field is about
the sensor type, and the last two digits indicates the sensor’s
index number (i.e. NW.001.ACC.01). Each sensor ID is
preconfigured by the medical doctor assigning to a specific
BSN. All sensing data are headed with its own ID. Once
data are pushed to the cloud, the back end system is able
to identify the data source by its ID stored in the header.

The back end system is implemented using Node.js and
the optimizer algorithm is written in Java. Virtual sink
node, virtual sensor node and virtual sensors in the cloud
are JavaScript classes or functions that are created to be the
counterpart of each real component in the BSN and ASN.
Theses virtual nodes offers different features like storing and
retrieving data from database, issuing pull requests to Edge
layer, getting result and replying to end users, etc.... Data
stored in database are raw data, which are used later to
analyze patients health status and physical activities using
different data mining tools available in the cloud server.

3.1 System Architecture
BitC consists of the following three layers (Fig. 2).
Sensor Layer: operates one or more BSNs on a per-

patient basis (Fig. 2). Each BSN contains one or more sensor
nodes in a certain topology. This paper assumes the star
topology. Each sensor node is equipped with different types
of sensors. It is assumed to be battery-operated. (It has
limited energy supply.) It maintains a sensing interval and a
sampling rate for each sensor attached to it. Upon a sensor
reading, it stores collected data in its own memory space.
Given a data transmission interval, it periodically flushes all
data stored in its memory space and transmits the data to
a sink node.

Edge Layer: consists of sink nodes, each of which par-
ticipates in a certain BSN and receives sensor data peri-
odically from sensor nodes in the BSN. A sink node stores
incoming sensor data in its memory space and periodically
flushes stored data to transmit (or push) them to the cloud
layer. It maintains the mappings between physical and vir-
tual sensors. In other words, it knows the origins and des-
tinations of sensor data. Different sink nodes have different
data transmission intervals. A sink node’s data transmission
interval can be different from the ones of sensor nodes in the
same BSN. Sink nodes are assumed to have limited energy
supplies through batteries.

In addition to pushing sensor data to a virtual sensor,
each sink node receives a pull request from a virtual sensor
when the virtual sensor does not have data that a cloud
application(s) requires. If the sink node has the requested
data in its memory, it returns that data. Otherwise, it issues
another pull request to a sensor node that is responsible
for the requested data. Upon receiving a pull request, the
sensor node returns the requested data if it has the data
in its memory. Otherwise, it returns an error message to a
could application.

Cloud Layer: operates on clouds to host applications
that allow medical staff to place continuous sensor data re-
quests on virtual sensors in order to monitor patients. If
a virtual sensor has data that an application requests, it
returns that data. Otherwise, it issues a pull request to a
sink node. While push communication carries out a one-way

upstream travel of sensor data, pull communication incurs
a round trip for requesting sensor data and receiving that
data (or an error message).

Virtual sensors are JavaScript nodes running in the server
on the cloud layer. These virtual sensor nodes are predefined
by medical doctors. Once data are pushed to the cloud layer,
corresponding virtual sensor node responds to the arrived
data by checking the identification number. Virtual sen-
sors call storeToDB method which issues a sql query that
store the received data to the corresponding table in the
database. Every time a request come in virtual sensors first
check whether the data is available by calling isAvailable
method. If the data is available then it retrieves the data
by calling getFromDB method that issues a sql query to the
corresponding table in the database, if not virtual sensors is-
sues a pull request to Edge layer by calling pullData method.
Once virtual sensors get the desired data, it backs to user.

MongoDB is chosen to be used as the main storage scheme
in BitC due to its high scalability and integrity with NodeJS.
The data structure is described in the Fig. ?? and explained
in the Section 5.2.

4. CONFIGURATOR IN BITC
This section describes a BSN configuration problem for

which BitC seeks equilibrium solutions. Each BSN config-
uration consists of four types of parameters (i.e., decision
variables): sensing intervals and sampling rates for sensor
nodes as well as data transmission intervals for sensor and
sink nodes. The problem is stated with the following sym-
bols.

• B = {b1, b2, ..., bi, ..., bN} denotes the set of N BSNs,
each of which operates for a patient.

• Each BSN bi consists of a sink node (denoted by mi)
andM sensors: bi = {si1, si2, ..., sij , ..., siM}. oij is the
data transmission interval for sij to transmit sensor
collected data. pij and qij are the sensing interval
and sampling rate for sij . Sampling rate is defined
as the number of sensor data samples collected in a
unit time. Each sensor stores collected sensor data in
its memory space until its next push transmission. If
the memory becomes full, it performs FIFO (First-In-
First-Out) data replacement. In a push transmission,
it flushes and sends out all data stored in its memory.

• omi denotes the data transmission interval for mi to
forward (or push) sensor data incoming from sensor
nodes in bi In between two push transmissions, mi

stores sensor data from bi in its memory. It performs
FIFO data replacement if the memory becomes full. In
a push transmission, it flushes and sends out all data
stored in the memory.

• Rij = {rij1, rij2, ..., rijr, ..., rij|Rijk|} denotes the set
of sensor data requests that cloud applications issue
to the virtual counterpart of sij (s′ij) during the time
period of W in the past. Each request rijr is character-
ized by its time stamp (tijr) and time window (wijr).
It retrieves all sensor data available in the time inter-
val [tijr −wijr, tijr]. If s′ij has at least one data in the
interval, it returns those data; otherwise, it issues a
pull request to mi.

Virtual
machine

Ambient
sensor
networks (ASNs)

Gateway
layer

Sensor
layer

Cloud
layer

Web-based
apps

Virtual
sensor nodes

Push

Push

Pull

Pull

Virtual
BSN

Sensor
nodes

Communication

BSN/ASN Management

Data Analytics

Cloud-based Services

…

Clinicians

Gateway node

Sensor
nodes &
Sensors

BSN

Virtual
sensor
nodes &
Virtual
sensors

App App

Body sensor
networks (BSNs)

ASN

Virtual
ASN

Virtual
machine

App
App

Data Storage

Security and Privacy

Figure 2: The Architecture of Body-in-the-Cloud (BitC)

• Rm
ij ∈ Rij denotes the set of sensor data requests for

which a virtual sensor s′ij has no data. |Rm
ij | indicates

the number of pull requests that s′ij issues to mi. In
other words, Rij \Rm

ij is the set of sensor data requests
that s′ij fulfills regarding sij .

• Rs
ij ∈ Rm

ij ∈ Rij denotes the set of sensor data requests
for which mi has no data. |Rs

ij | indicates the number
of pull requests that mi issues to hij for collecting data
from sij . Rm

ij \ Rs
ij is the set of sensor data requests

that mi fulfills regarding sij .

This paper considers four performance objectives: band-
width consumption between the edge and cloud layers (fB),
energy consumption of sensor and sink nodes (fE), request
fulfillment for cloud applications (fR) and data yield for
cloud applications (fD). The first two objectives are to be
minimized while the others are to be maximized.

The bandwidth consumption objective (fB) is defined as
the total amount of data transmitted per a unit time be-
tween the edge and cloud layers. This objective impacts
the payment for bandwidth consumption based on a cloud
operator’s pay-per-use billing scheme. It also impacts the
lifetime of sink nodes. fB is computed as follows.

fB =
1

W

N∑
i=1

M∑
j=1

(cijdij) +
1

W

N∑
i=1

M∑
j=1

|Rm
ij |∑

r=1

(φijrdij + dr)

+
1

W

N∑
i=1

M∑
j=1

|Rs
ij |∑

r=1

er(|Rs
ij | − ηijr) (1)

The first and second terms indicate the bandwidth con-
sumption by one-way push communication from the edge
layer to the cloud layer and two-way pull communication
between the cloud and edge layers, respectively. cij denotes
the number of sensor data that sij generates and sink nodes
in turn push to the cloud layer during W . dij denotes the
size of each sensor data (in bits) that sij generates. It is

currently computed as: qij × 16 bits/sample. φijr denotes
the number of sensor data that a pull request r ∈ Rm

ij can
collect from sink nodes (φijr = |Rm

ij \ Rs
ij |). dr is the size

of a pull request transmitted from the cloud layer to the
edge layer. The third term in Eq. 1 indicates the bandwidth
consumption by the error messages that sensors generate
because they fail to fulfill pull requests. ηijr is the number
of sensor data that a pull request r ∈ Rs

ij can collect from
sensor nodes. er is the size of an error message.

The energy consumption objective (fE) is defined as the
total amount of energy that sensor and sink nodes consume
for data transmissions during W . It impacts the lifetime of
sensor and sink nodes. It is computed as follows.

fE =

N∑
i=1

M∑
j=1

W

oij
etdij +

N∑
i=1

M∑
j=1

|Rs
ij |∑

r=1

etηijr(dij + d′r)

+

N∑
i=1

M∑
j=1

L∑
k=1

W

omi

etdij +

N∑
i=1

M∑
j=1

|Rm
ij |∑

r=1

etφijr(dij + dr)

+ 2×
N∑
i=1

M∑
j=1

|Rs
ij |∑

r=1

eter(|Rs
ij | − ηijr) (2)

The first and second terms indicate the energy consump-
tion by one-way push communication from the sensor layer
to the edge layer and two-way pull communication between
the edge layer and the sensor layer, respectively. et denotes
the amount of energy (in Watts) that a sensor or sink node
consumes to transmit a single bit of data. d′r denotes the
size of a pull request from the edge layer to the sensor layer.
The third and fourth terms indicate the energy consump-
tion by push and pull communication between the edge and
cloud layer, respectively. The fifth term indicates the energy
consumption for transmitting error messages on sensor and
sink nodes.

The request fulfillment objective (fR) is the ratio of the
number of fulfilled requests over the total number of re-
quests:

fR =

∑N
i=1

∑M
j=1

∑|Rij |
r=1 IRij

|Rij |
× 100 (3)

IRij = 1 if a request r ∈ Rij obtains at least one sensor
data; otherwise, IRij = 0.

The data yield objective (fY) is defined as the total amount
of data that cloud applications gather for their users. This
objective impacts the informedness and situation awareness
for application users. It is computed as follows.

fY =

N∑
i=1

M∑
j=1

|Rm
ij |∑

r=1

φijr +

N∑
i=1

M∑
j=1

|Rs
ij |∑

r=1

ηijr + cij (4)

In BitC, optimization objectives conflict with each other.
For example, the data yield objective conflicts with the other
two objectives. Maximizing data yield means increasing
data transmission intervals for sensor and sink nodes. This
increases bandwidth consumption and energy consumption.
Similarly, the energy consumption objective conflicts with
the data yield objective. Minimizing energy consumption
means reducing data transmission intervals for sensor nodes.
This can reduce data yield. Given these conflicting objec-
tives, this paper seeks the optimal trade-off (i.e., Pareto-
optimal) configurations for data transmission intervals in
BitC.

4.1 A Design of Evolutionary Game in CIELO
BitC maintains N populations, {P1,P2, ...,PN}, for N

BSNs and performs games among strategies in each popula-
tion. Each strategy s(bi) specifies a particular configuration
for a BSN bi using four types of parameters: sensing inter-
vals and sampling rates for sensors (pij and qij) as well as
data transmission intervals for sink and sensor nodes (omi

and oij).

s(bi) =
⋃

j∈1..M

(omi , oij , pij , qij) 1 < i < N (5)

Algorithm 1 shows how BitC seeks an evolutionarily stable
configuration strategy for each BSN through evolutionary
games. In the 0-th generation, strategies are randomly gen-
erated for each of N populations {P1,P2, ...,PN} (Line 2).

In each generation (g), a series of games are carried out on
every population (Lines 4 to 27). A single game randomly
chooses a pair of strategies (s1 and s2) and distinguishes
them to the winner and the loser with respect to perfor-
mance objectives described in Section 4 (Lines 7 to 9). The
winner is replicated to increase its population share and mu-
tated with polynomial mutation (Lines 10 to 18) [2]. Mu-
tation randomly chooses a parameter (or parameters) in a
given strategy with a certain mutation rate Pm and alters it-
s/their value(s) at random (Lines 12 to 14). Then the loser of
the game is replaced by the winner’s replica (Line 17). Once
all strategies play games in the population, BitC identifies
a feasible strategy whose population share (xs) is the high-
est and determines it as a dominant strategy (di) (Lines 20
to 24). In the end, BitC uses the dominant strategy to
adjust the configuration parameters for a BSN in question
(Line 25).

A game is carried out based on the superior-inferior re-
lationship between given two strategies and their feasibility
(c.f. performGame() in Algorithm 1). If a feasible strategy
and an infeasible strategy participate in a game, the feasible
one always wins over its opponent. If both strategies are
feasible, they are compared with their hypervolume value.

Hypervolume (HV) metric [5] measures the volume that
a given strategy s dominates in the objective space:

HV (s) = Λ
(⋃
{x′|s � x′ � xr}

)
(6)

Λ denotes the Lebesgue measure. xr is the reference point
placed in the objective space. A higher hypervolume means
that a strategy is more optimal. Given two strategies, the
one with a higher hypervolume value wins a game. If both
have the same hypervolume value, the winner is randomly
selected.

If both strategies are infeasible in a game, they are com-
pared based on their constraint violation. An infeasible
strategy s1 wins a game over another infeasible strategy s2
if both of the following conditions hold:

• s1’s constraint violation is lower than, or equal to, s2’s
in all constraints.

• s1’s constraint violation is lower than s2’s in at least
one constraints.

Algorithm 1 Evolutionary Process in BitC

1: g = 0
2: Randomly generate the initial N populations for N

BSNs: P = {P1,P2, ...,PN}
3: while g < Gmax do
4: for each population Pi randomly selected from P do
5: P ′

i ← ∅
6: for j = 1 to |Pi|/2 do
7: s1 ← randomlySelect(Pi)
8: s2 ← randomlySelect(Pi)
9: {winner, loser} ← performGame(s1, s2)

10: replica ← replicate(winner)
11: for each parameter v in replica do
12: if random() ≤ Pm then
13: replica ← mutate(replica, v)
14: end if
15: end for
16: Pi \ {s1, s2}
17: P ′

i ∪ {winner, replica}
18: end for
19: Pi ← P ′

i
20: di ← argmaxs∈Pixs
21: while di is infeasible do
22: Pi \ {di}
23: di ← argmaxs∈Pixs
24: end while
25: Use di to adjust the parameters for a BSN in ques-

tion.
26: end for
27: g = g + 1
28: end while

5. SIMULATION AND EMPIRICAL EVAL-
UATION

5.1 Simulation configuration and results
This section evaluates BitC through simulations and stud-

ies how BitC adapts BSN configurations to given operational
conditions (e.g., data request patterns placed by cloud ap-
plications and memory space availability in sink and sensor
nodes).

Simulations are configured with real experiment parame-
ters shown in Table 1. This paper assumes a nursing home
where senior residents/patients live. BitC supports imple-
mentation of ASNs and BSNs, however ASNs are not taken
into account in this paper’s experiment implementation due
to limitation of available resources. A small-scale and a
larger-scale simulations are carried out with 3 and 100 res-
idents, respectively. The large-scale setting is used unless
otherwise noted. Each resident is simulated to wear four
sensors: a blood pressure sensor, an ECG sensor and two
accelerometers (Fig. 1).

Cloud applications issue 1,000 data requests during three
hours. Data requests are uniformly distributed over virtual
sensors. Mutation rate is set to 1/V where V is the number
of parameters in a strategy. Every simulation result is the
average with 5 independent simulation runs.

Table 1: BitC Parameters

BitC S BitC L

Number of generations (Gmax) 20 100
Number of BSNs (N) 3 100

Number of simulation runs 5 5
Number of requests 1000 1000

Duration of a simulation (W) 3 hrs 3 hrs
Population size (|Pi|) 50 50
Mutation rate (Pm) 1/V 1/V

Fig. 3a shows how hypervolume increases through gener-
ations. At each generation, hypervolume is measured with
a set of dominant strategies taken from individual popula-
tions. Hypervolume starts from 0.872 and reaches 0.948 at
the last generation. Fig. 3b and Fig. 3c are maximum, mini-
mum and average objectives values of the dominant strategy
in the last generation from 5 different simulation runs rep-
resented in box plots.

Fig. 4 shows how BitC improves its performance through
generations. Figs. 4a to 4d show the changes of objective val-
ues over generations. Results illustrate that BitC improves
its objective values by balancing the trade-offs among con-
flicting objectives. For example, in Fig. 4a and Figs. 4b,
BitC improves both request fulfillment and bandwidth con-
sumption through generations while the two objectives con-
flict with each other.

The optimization configurator supports the integration of
any optimization algorithm. In this paper BitC is compared
with two well known genetic algorithms NSGA II and its
newer version NSGA III. Both genetic algorithms run with
the same configuration parameters as BitC shown in Ta-
ble 1. Two different simulation scale are performed to eval-
uate each algorithm’s execution time under small and large
environment settings. Results in Table 2 show that BitC
outperforms NSGA II and NSGA III in execution time for
both small and large environment scale. Optimization al-
gorithms are running in the cloud back end system, in this
paper Amazon EC2 Ubuntu free instance is used as cloud
computing environment.

Table 2: Execution time per run

BitC NSGA II NSGA III

Exec time S 5m 54s 7m 44s 24m 5s
Exec time L 2h 49m 4h 18m 5h 05m

5.2 Empirical experiment evaluation
In this section empirical experiment are built to evaluate

the real communication delay as well as the time taken to
push and to store sensor data into the database. In the ex-
periment a nexus 5 smartphone is used as sink node device,
it is configured to simulate the collection of four sensors data
in one BSN (one blood pressure, two accelerometer and one
ECG). It starts issuing a pull request to get the latest con-
figuration parameters from Cloud and to use it to configure
its own BSN (sink node transmission interval, sensor node
transmission interval, sensors sensing interval and sensors
sampling rate). And It will send the getting configuration
request every hour to keep update its BSN’s configuration
parameters. These configuration parameters have a fix size
of 512 bits, the response time from cloud to sink node takes
less than 1 ms.

As explained in the Section 3.1 MongoDB is used in BitC
architecture as data storage system. Table. 3 and 4 shows
the database implementation of Both collection BSN and
Blood pressure sensor. Table. 3 illustrates the data struc-
ture of one BSN, each BSN has its own unique identifica-
tion number generated automatically by MongoDB and it is
stored in the field id. The rest of data fields are divided
by each sensor starting with the abbreviation of the sen-
sor type (BP : Blood pressure, ACC: accelerometer, ECG:
electrocardiogram sensor). Each sensor have five data fields
which are four configuration parameters (tx denotes the
sink note transmission interval, tx interval denotes the
sink note transmission interval, sen interval denotes the
sensor sensing interval and samp rate denotes the sensor
sampling rate) plus sensor unique identification code stored
in the field code. Table. 4 shows the data structure of a
blood pressure sensor, the collection is named with sensor’s
unique identification code. Each document in the collection
stores the sensor data collected per day indicated in the field
date. p id indicates the BSN’s unique id which the sensor
belongs to, s data stores the raw sensor data pushed from
sink node (fake data are used in the experiment), and type
shows the sensor type.

Sink node collects the amount of sensor data based on
the each sensor sensing interval and sampling rate, then it
pushes to the cloud periodically following the configuration
parameters got from BitC optimization algorithm. Table 5
shows the average, maximum and minimum number of sam-
ples for each sensor type that are taken into account in the
experiment setting to evaluate the transmission latency in
different possible scenarios. These average, maximum and
minimum values indicate the amount of samples that are
pushed each time to the cloud by different sensor type.

Empirical experiment results are shown in Table 6 and
Fig 5, 3G/Wifi both network are used in the experiment.
The amount of sensor data are calculated from Table 5,
where the average, maximum and minimum data amount
per each sensor are taken into account. Also two extreme
cases are evaluate, 2 bytes is the minimum data unit and 16
Mbytes is the limitation of BSON data structure. These two

(a) Hypervolume (b) Bandwidth & Data Yield (c) Energy & Request Fulfillment

Figure 3: BitC Objective Values in the last generation presented in Boxplot and BitC Hypervolume value through generations

(a) Request Fulfillment (b) Bandwidth Consumption (c) Data Yield (d) Energy Consumption

Figure 4: BitC Objective Values through Generations

Table 3: BSN data structure

Data field Description

id BSN unique identification number
BP code Blood pressure sensor unique identification code
BP tx Blood pressure sink node transmission interval

BP tx interval Blood pressure sensor transmission interval
BP sen interval Blood pressure sensing interval
BP samp rate Blood pressure sensor sampling rate
ACC1 code Accelerometer 1 sensor unique identification code
ACC1 tx Accelerometer 1 sink node transmission interval

ACC1 tx interval Accelerometer 1 sensor transmission interval
ACC1 sen interval Accelerometer 1 sensing interval
ACC1 samp rate Accelerometer 1 sensor sampling rate

ACC2 code Accelerometer 2 sensor unique identification code
ACC2 tx Accelerometer 2 sink node transmission interval

ACC2 tx interval Accelerometer 2 sensor transmission interval
ACC2 sen interval Accelerometer 2 sensing interval
ACC2 samp rate Accelerometer 2 sensor sampling rate

ECG code Electrocardiogram sensor unique identification code
ECG tx Electrocardiogram sink node transmission interval

ECG tx interval Electrocardiogram sensor transmission interval
ECG sen interval Electrocardiogram sensing interval
ECG samp rate Electrocardiogram sensor sampling rate

values are just chosen for evaluation purposes, in real BitC
system none of these two values could be reached. Trans-
mission time is calculated as the time taken from sending
the data to the moment that cloud receive completely the
pushed data in seconds, as results show that the transmis-
sion time remain constant 1 second and it does not increase
except the amount of data pushed reaches to 16 Mbytes.
BitC is configured and implemented as an energy and band-

Table 4: Sensor data structure

Data field Description

id Sensor data unique identification number
s data Sensor raw data
type Sensor type
p id BSN unique identification number
date Date

Table 5: Number of samples pushed each time by different sensor
type

Blood pressure Accelerometer ECG

minimum 40 100 60
average 645 1350 2530

maximum 1250 2500 5000

width efficient system, the amount of sensor data need to be
pushed by each BSN is relatively very small in comparison
with the large bandwidth offered by 3G and Wifi. Storage
time is computed as the time taken from receiving the data
from sink node to the moment that the total amount of data
is ensured to be stored in the database. Results show that
the storage time increases very smoothly and in the extreme
case 16 Mbytes it just takes about 58 ms. All the results are
calculated as the average of 10 experiment runs.

6. CONCLUSION

7. REFERENCES
[1] M. Chen, S. Gonzalez, A. V. Vasilakos, H. Cao, and

V. C. Leung. Body area networks: A survey. Mobile
Netw. Appl., 16(2), 2011.

(a) storage latency (b) transmission latency

Figure 5: Transmission and Storage latency

Table 6: Transmission and storage latency

Sensor data (bytes) Transmission time (s) Storage time (ms)

2 1 s 2 ms
80 1 s 2 ms
120 1 s 2 ms
200 1 s 2 ms
1250 1 s 2 ms
2500 1 s 3 ms
5000 1 s 3 ms
10000 1 s 3 ms
20000 1 s 4 ms
125000 1 s 5 ms

16000000 7 s 58 ms

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Trans Evol. Computat., 6(2), 2002.

[3] Y. Hao and R. Foster. Wireless body sensor networks
for health-monitoring applications. Physiological
Measurement, 29(11):R27–56, 2008.

[4] S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers.
A review of wearable sensors and systems with
application in rehabilitation. Journal of
Neuroengineering and Rehabilitation, 9(21), 2012.

[5] E. Zitzler and L. Thiele. Multiobjective optimization
using evolutionary algorithms: A comparative study. In
Proc. Int’l Conf. on Parallel Problem Solving from
Nature, 1998.

