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This paper proposes and evaluates a multiobjective evolutionary game theoretic frame-

work for adaptive and stable application deployment in clouds that support dynamic volt-

age and frequency scaling (DVFS) for CPUs. The proposed algorithm, called AGEGT,
aids cloud operators to adapt the resource allocation to applications and their locations

according to the operational conditions in a cloud (e.g., workload and resource avail-

ability) with respect to multiple conflicting objectives such as response time, resource
utilization and power consumption. In AGEGT, evolutionary multiobjective games are

performed on application deployment strategies (i.e., solution candidates) with an aid

of guided local search. AGEGT theoretically guarantees that each application performs
an evolutionarily stable deployment strategy, which is an equilibrium solution under

given operational conditions. Simulation results verify this theoretical analysis; applica-

tions seek equilibria to perform adaptive and evolutionarily stable deployment strategies.
AGEGT allows applications to successfully leverage DVFS to balance their response
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time, resource utilization and power consumption. AGEGT gains performance improve-
ment via guided local search and outperforms existing heuristics such as first-fit and

best-fit algorithms (FFA and BFA) as well as NSGA-II.

Keywords: Cloud computing; evolutionary game theory; multiobjective optimization,
guided local search

1. Introduction

It is a challenging issue for cloud operators to deploy applications so that the applica-

tions can keep expected levels of performance (e.g. response time) while maintaining

their utilization of resources (e.g. CPUs and bandwidth) and power consumption.

In order to ensure these requirements, they are required to dynamically (re-)deploy

applications by adjusting their locations and resource allocation according to var-

ious operational conditions such as workload and resource availability. This paper

investigates two important properties of application deployment in clouds:

• Adaptability: Adjusting the locations of and resource allocation for appli-

cations according to operational conditions (e.g., workload and resource

availability) with respect to given objectives such as response time, resource

utilization and power consumption.

• Stability: Minimizing oscillations (non-deterministic inconsistencies) in

making adaptation decisions.

AGEGT is an evolutionary game theoretic framework for adaptive and stable ap-

plication deployment in clouds that support dynamic voltage and frequency scaling

(DVFS) for CPUs. This paper describes its design and evaluates its adaptability and

stability. In AGEGT, each application maintains a set (or a population) of deploy-

ment strategies, each of which indicates the location of and resource allocation for

that application. AGEGT repeatedly performs evolutionary multiobjective games

on deployment strategies and evolves them over generations with respect to con-

flicting objectives. In each generation, AGEGT runs active-guided mutation, which

alters deployment strategies based on the guided local search (GLS) algorithm [30].

It records inferior deployment strategies as penalties through generations and uses

the penalties to help strategies escape from local optima and gain performance

improvement.

AGEGT theoretically guarantees that, through a series of evolutionary games

between deployment strategies, the population state (i.e., the distribution of strate-

gies) converges to an evolutionarily stable equilibrium, which is always converged

to regardless of the initial state. (A dominant strategy in the evolutionarily stable

population state is called an evolutionarily stable strategy.) In this state, no other

strategies except an evolutionarily stable strategy can dominate the population.

Given this theoretical property, AGEGT aids each application to operate at equi-

libria by using an evolutionarily stable strategy for application deployment in a

deterministic (i.e., stable) manner.
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Simulation results verify this theoretical analysis; applications seek equilibria

to perform evolutionarily stable deployment strategies and adapt their locations

and resource allocations to given operational conditions. AGEGT allows applica-

tions to successfully leverage DVFS to balance their response time performance,

resource utilization and power consumption. AGEGT’s performance is evaluated

in comparison to existing heuristic algorithms. Simulation results demonstrate that

AGEGT outperforms a well-known multiobjective evolutionary optimization algo-

rithm, NSGA-II [7] by 25% in deployment quality while maintaining 98% higher

stability (lower oscillations) in performance across different simulation runs. More-

over, AGEGT outperforms two well-known heuristics, first-fit and best-fit algo-

rithms (FFA and BFA), which have been widely used for adaptive cloud application

deployment [2, 11,18,19].

2. Problem Statement

This section formulates an application deployment problem where M hosts are avail-

able in a cloud data center to operate N applications. Each application is designed

with a set of server software, following a three-tier application architecture [23, 28]

(Fig. 1). Using a certain hypervisor such as Xen [1], each server is assumed to run

on a virtual machine (VM) atop a host. A host can operate multiple VMs. They

share resources available on their local host. Each host is assumed to be equipped

with a multi-core CPU.

Each message is sequentially processed from a Web server to a database server

through an application server. A reply message is generated by the database server

and forwarded in the reverse order toward a user. (Fig. 1). This paper assumes

that different applications utilize different sets of servers. (Servers are not shared

by different applications.) And each host runs multi cores processor to allocate

differents applications.

Fig. 1. Three Tiers of Web, Application and Database Servers

The goal of this problem is to find evolutionarily stable strategies that deploy

N applications (i.e., N × 3 VMs) on M hosts so that the applications adapt their

locations and resource allocation to given workload and resource availability with

respect to the four objectives described below. Every objective is computed on an

application by application basis.

• CPU allocation (fC): A certain CPU time share (in percentage) is allocated

to each VM. (The CPU share of 100% means that a CPU core is fully allo-
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cated to a VM.) It represents the upper limit for the VM’s CPU utilization.

This objective is computed as the sum of CPU shares allocated to three

VMs of an application.

fC =

3∑
t=1

ct (1)

ct denotes the CPU time share allocated to the t-th tier server in an

application.

• Bandwidth allocation (fB): A certain amount of bandwidth (in bits/second)

is allocated to each VM. It represents the upper limit for the VM’s band-

width consumption. This objective is computed as the sum of bandwidth

allocated to three VMs of an application.

fB =

3∑
t=1

bt (2)

bt denotes the amount of bandwidth allocated to the t-th tier server in

an application.

• Response time (fRT ): This objective indicates the time required for a mes-

sage to travel from a web server to a database server. It is computed as

follows.

fRT = T p + Tw + T c (3)

T p denotes the total time for an application to process an incoming

message from a user at three servers. Tw is the waiting time for a message

to be processed at servers. T c denotes the total communication delay to

transmit a message between servers. T p, Tw and T c are estimated with the

M/M/M queuing model, in which message arrivals follow a Poisson process

and a server’s message processing time is exponentially distributed.

T p is computed as follows where T p
t denotes the time required for the

t-th tier server to process a message.

T p =

3∑
t=1

T p
t (4)

Tw is computed as follows.

Tw =
1

λ

3∑
t=1

ρ0
aOt
O!

ρt
(1− ρt)2

(5)

where at = λt
T p
t

ct · qt/qmax
, ρt =

at
O
, ρ0 =

(
O−1∑
n=0

ρnt
n!

+
ρOt
O!

1

1− ρt/O

)−1
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λ denotes the message arrival rate for an application (i.e., the number

of messages the application receives from users in the unit time). Note that

λ = 1
3

∑3
t=1 λt where λt is the message arrival rate for the t-th tier server

in the application. Currently, λ = λ1 = λ2 = λ3. ρt denotes the utilization

of a CPU core that the t-th tier server resides on. qmax is is the maximum

CPU frequency. qt is the frequency of a CPU core that the t-th tier server

resides on. O is the total number of cores that a CPU contains.

T c is computed as follows.

T c =

2∑
t=1

T c
t→t+1 ≈

3∑
t′=2

B · λt+1

bt
(6)

B is the size of a message (in bits). T c
t→t+1 denotes the communication

delay to transmit a message from the t-th to (t + 1)-th server. bt denotes

the bandwidth allocated to the t-th tier server (bits/second).

• Power Consumption (fPC): This objective indicates the total power con-

sumption (in Watts) by the CPU cores that operate three VMs in an ap-

plication.

fPC =

3∑
t=1

(
P qt
idle + (P qt

max − P
qt
idle) · ct ·

qt
qmax

)
(7)

P qt
idle and P qt

max denote the power consumption of a CPU core that the

t-th tier server resides on when its CPU utilization is 0% and 100% at the

frequency of qt, respectively.

AGEGT considers the following four constraints.

• CPU core capacity constraint (CC): The upper limit of the total share allo-

cation on each CPU core. ci,o ≤ CC for all O cores on all M hosts where ci,o
is the total share allocation on the o-th core of the i-th host. The violation

of this constraint is computed as:

gC =

M∑
i=1

O∑
o=1

(
ICi,o · (ci,o − CC)

)
(8)

ICi,o = 1 if oi > CC . Otherwise, ICi,o = 0.

• Bandwidth capacity constraint (CB): The upper limit of bandwidth con-

sumption allocated to each host. bi ≤ CB for all M hosts where bi is the

total amount of bandwidth allocated to the i-th host. The violation of this

constraint is computed as:

gB =

M∑
i=1

(
IBi · (bi − CB)

)
(9)
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IBi = 1 if bi > CB . Otherwise, IBi = 0.

• Response time constraint (CRT ): The upper limit of response time for each

application. f iRT ≤ CRT for all N applications where f iRT is the response

time of the i-th application. The violation of this constraint is computed

as:

gRT =

N∑
i=1

(
IRT
i · (f iRT − CRT )

)
(10)

IRT
i = 1 if f iRT > CRT . Otherwise, IRT

i = 0.

• Power consumption constraint (CPC): The upper limit of power consump-

tion for each application. f iPC ≤ CPC for all N applications where f iPC

is the power consumption of the i-th application. The violation of power

consumption constraint is computed as:

gPC =

N∑
i=1

(
IPC
i · (f iPC − CPC)

)
(11)

IPC
i = 1 if f iPC > CPC . Otherwise, IPC

i = 0.

3. Background: Evolutionary Game Theory

In a conventional game in the game theory, the objective of a rational player is to

choose a strategy that maximizes its payoff. In contrast, evolutionary games are

played repeatedly by players randomly drawn from a population [20, 34]. This sec-

tion overviews key elements in evolutionary games: evolutionarily stable strategies

(ESS) and replicator dynamics.

3.1. Evolutionarily Stable Strategies (ESS)

Suppose all players in the initial population are programmed to play a certain

(incumbent) strategy k. Then, let a small population share of players, x ∈ (0, 1),

mutate and play a different (mutant) strategy `. When a player is drawn for a game,

the probabilities that its opponent plays the incumbent strategy k and the mutant

strategy ` are 1−x and x, respectively. Thus, the expected payoffs for the player to

play k and ` are denoted as U(k, x`+(1−x)k) and U(`, x`+(1−x)k), respectively.

Definition 1. A strategy k is said to be evolutionarily stable if, for every strategy

` 6= k, a certain x̄ ∈ (0, 1) exists, such that the inequality

U(k, x`+ (1− x)k) > U(`, x`+ (1− x)k) (12)

holds for all x ∈ (0, x̄).
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If the payoff function is linear, Equation 12 derives:

(1− x)U(k, k) + xU(k, `) > (1− x)U(`, k) + xU(`, `) (13)

If x is close to zero, Equation 13 derives either

U(k, k) > U(`, k) or U(k, k) = U(`, k) and U(k, `) > U(`, `) (14)

This indicates that a player associated with the strategy k gains a higher payoff

than the ones associated with the other strategies. Therefore, no players can benefit

by changing their strategies from k to the others. This means that an ESS is a

solution on a Nash equilibrium. An ESS is a strategy that cannot be invaded by

any alternative (mutant) strategies that have lower population shares.

3.2. Replicator Dynamics

The replicator dynamics describes how population shares associated with different

strategies evolve over time [27]. Let λk(t) ≥ 0 be the number of players who play

the strategy k ∈ K, where K is the set of available strategies. The total population

of players is given by λ(t) =
∑ |K|

k=1λk(t). Let xk(t) = λk(t)/λ(t) be the population

share of players who play k at time t. The population state is defined by X(t) =

[x1(t), · · · , xk(t), · · · , xK(t)]. Given X, the expected payoff of playing k is denoted

by U(k,X). The population’s average payoff, which is same as the payoff of a player

drawn randomly from the population, is denoted by U(X,X) =
∑ |K|

k=1xk ·U(k,X).

In the replicator dynamics, the dynamics of the population share xk is described as

follows. ẋk is the time derivative of xk.

ẋk = xk · [U(k,X)− U(X,X)] (15)

This equation states that players increase (or decrease) their population shares

when their payoffs are higher (or lower) than the population’s average payoff.

Theorem 1. If a strategy k is strictly dominated, then xk(t)t→∞ → 0.

A strategy is said to be strictly dominant if its payoff is strictly higher than any

opponents. As its population share grows, it dominates the population over time.

Conversely, a strategy is said to be strictly dominated if its payoff is lower than

that of a strictly dominant strategy. Thus, strictly dominated strategies disappear

in the population over time.

There is a close connection between Nash equilibria and the steady states in the

replicator dynamics, in which the population shares do not change over time. Since

no players want to change their strategies on Nash equilibria, every Nash equilibrium

is a steady state in the replicator dynamics. As described in Section 3.1, an ESS is

a solution on a Nash equilibrium. Thus, an ESS is a solution at a steady state in
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the replicator dynamics. In other words, an ESS is the strictly dominant strategy

in the population on a steady state.

AGEGT maintains a population of deployment strategies for each application.

In each population, strategies are randomly drawn to play games repeatedly until

the population state reaches a steady state. Then, AGEGT identifies a strictly

dominant strategy in the population and deploys VMs based on the strategy as an

ESS.

4. AGEGT: An Evolutionary Game Theoretic Scheduler for VMs

AGEGT maintains N populations, {P1,P2, ...,PN}, for N applications and per-

forms games among strategies in each population. A strategy s consists of five

parameters to indicate the locations of and the resource allocation for three VMs

in a particular application:

s(ai) =
⋃

t∈1,2,3

(
hi,t, ui,t, ci,t, bi,t, qi,t

)
, 1 < i < N (16)

ai denotes the i-th application. hi,t is the ID of a host that ai’s t-th tier VM is

placed to. ui,t is the ID of a CPU core that ai’s t-th tier VM resides on in the host

hi,t. ci,t and bi,t are the CPU and bandwidth allocation for ai’s t-th tier VM. qi,t
denotes the frequency of a CPU core that ai’s t-th tier VM resides on.

Fig. 2. Example Deployment Strategies

Fig. 2 shows two example strategies for two applications (a1 and a2) (N = 2).

Four cores are available in each of two hosts (M = 3 and O = 2). a1’s strategy, s(a1),

places the first-tier VM on the third core in the first host (h1,1 = 1 and u1,1 = 3).

The 30% time share of the CPU core and 80 Kbps bandwidth are allocated to the

VM (c1,1 = 30 and b1,1 = 80). The VM requires the frequency of 1 GHz for the CPU
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core (q1,1 = 1k). The second-tier VM of a1 is placed on the third core in the first

host (h1,2 = 1, u1,2 = 3). 30% of the CPU core time and 85 Kbps bandwidth are

allocated to the VM (c1,2 = 30 and b1,2 = 85). The VM requires the frequency of 2

GHz for the CPU core (q1,2 = 2k). The third-tier VM of a1 requires the frequency

of 2 GHz (q1,3 = 2k) on the third core of the second host (h1,3 = 2, u1,3 = 3). 45%

of the CPU core time and 120 Kbps bandwidth are allocated to the VM (c1,3 = 45

and b1,3 = 120). If multiple VMs are placed on a CPU core, the core operates at

the highest required frequency. For example, on the third core of the first host, two

VMs requires 1 GHz and 2 GHz. Thus, the core operates at 2 GHz.

Given s(a1), a1’s objective values for CPU and bandwidth allocation are 105%

(30 + 30 + 45) and 285 kbps (80 + 85 + 120). Assuming the CPU core capacity

constraint CC = 100% (Equation 8), it is satisfied on every core (gC = 0). For

example, on the third core of the first host, the total share allocation c1,3 is 60%

(30% + 30%).

Algorithm 1 Evolutionary Process in AGEGT
1: g = 0
2: Randomly generate N populations for N applications: P = {P1,P2, ...,PN}
3: while g < Gmax do
4: for each population Pi randomly selected from P do
5: P ′i ← ∅
6: for j = 1 to |Pi|/2 do
7: s1 ← randomlySelect(Pi)
8: s2 ← randomlySelect(Pi)
9: {winner, loser} ← performGame(s1, s2)

10: replica ← replicate(winner)
11: ai,t ← argmaxai,t∈ai ut(replica)
12: for each parameter v in ai,t do
13: if random() ≤ Pm then
14: replica ← mutate(replica, v)
15: end if
16: end for
17: winner′ ← performGame(loser, replica)
18: Pi \ {s1, s2}
19: P ′i ∪ {winner, winner′}
20: end for
21: Pi ← P ′i
22: di ← argmaxs∈Pi

xs
23: while di is infeasible do
24: Pi \ {di}
25: di ← argmaxs∈Pi

xs
26: end while
27: Deploy VMs for the current application based on di.
28: end for
29: g = g + 1

30: end while
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Algorithm 1 shows how AGEGT seeks an evolutionarily stable strategy for each

application through evolutionary games. In the 0-th generation, strategies are ran-

domly generated for each of N populations {P1,P2, ...,PN} (Line 2). Those strate-

gies may or may not be feasible. Note that a strategy is said to be feasible if it

violates none of four constraints described in Section 2. A strategy is said to be

infeasible if it violates at least one constraint.

In each generation (g), a series of games are carried out on every population

(Lines 4 to 26). A single game randomly chooses a pair of strategies (s1 and s2)

and distinguishes them to the winner and the loser with respect to the objec-

tives described in Section 2 (Lines 7 to 9). A game is carried out based on the

superior-inferior relationship between the two strategies and their feasibility (c.f.

performGame() in Algorithm 1). If a feasible strategy and an infeasible strategy par-

ticipate in a game, the feasible one always wins over its opponent. If both strategies

are feasible, they are compared with the hypervolume (HV) metric [35]. It measures

the volume that a given strategy s dominates in the objective space:

HV (s) = Λ
(⋃
{x′|s � x′ � xr}

)
(17)

Λ denotes the Lebesgue measure. xr is the reference point placed in the objective

space. The notion of Pareto dominance (�) is defined as follows. A strategy s1 is

said to dominate another strategy s2 (s1 � s2) if both of the following conditions

hold:

• s1’s objective values are superior than, or equal to, s2’s in all objectives.

• s1’s objective values are superior than s2’s in at least one objectives.

A higher hypervolume means that a strategy is more optimal. Given two strate-

gies, the one with a higher hypervolume value wins a game. If both have the same

hypervolume value, the winner is randomly selected.

If both strategies are infeasible in a game, they are compared based on their

constraint violation. An infeasible strategy s1 wins a game over another infeasible

strategy s2 if both of the following conditions hold:

• s1’s constraint violation is lower than, or equal to, s2’s in all constraints.

• s1’s constraint violation is lower than s2’s in at least one constraints.

Once a game determines the winner and the loser, the winner replicates itself

(Line 10). The replica is altered through active-guided mutation, which mutates a

strategy with guided local search (GLS) [30] (Lines 11 to 16). Of three VMs of an

application that a given strategy represents (ai,t ∈ ai), this mutation scheme first

identifies the VM that yields the worst performance with modified objective func-

tions (Line 11) and then mutates a parameter(s) for the VM (Lines 12 to 16). Eq. 18
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is used to evaluate the t-th VM of an application that a strategy s is represents.

~ut(s) =
~f
′
t (s)

1 + Pk
(18)

~f
′
t (s) = {f ′t,C(s), f

′

t,B(s), f
′

t,RT (s), f
′

t,PC(s)} is a vector of modified objective

functions. f
′

t,C(s) is computed based on the CPU allocation for the t-th VM of an

application that a strategy s represents. Modified objective functions are defined as

follows.

~f
′
t (s) = ~ft(s) + λ

∑
U
k=1PkIk,t(s) (19)

~ft(s) = {ft,C(s), ft,B(s), ft,RT (s), ft,PC(s)}. Each function ft(s) is computed on

a VM by VM basis by customizing the original objective function (Eq. 1, 2, 3 or 7).

For example, ft,C(s) indicates the CPU allocation for the t-th VM of an application

that a strategy s represents. U denotes the total number of CPU cores in a cloud:

U = M ∗ O. Pk is the penalty for the k-th CPU core. It is initialized as 0 in the

first generation and repeatedly incremented through generations. Ik(s) is a boolean

variable that contains 1 if the k-th CPU core is assigned to the t-th VM of an

application that s represents and otherwise 0.

Active-guided mutation evaluates the performance of each VM of an application

that a strategy s represents, as ~ut(s) in Eq. 18, and determines the worst VM by

comparing ~ut(s), 1 < t < 3 through the notion of Pareto dominance. The worst

VM is chosen in Line 11. In Eq. 18, k in Pk indicates the CPU core that the t-th

VM resides on, and Pk denotes the total amount of penalty that the CPU core has

accumulated in the past generations.

Active-guided mutation also uses ~ut(s) in Eq. 18 as the utility of penalizing each

VM. Once it determines the worst VM in Line 11, it increments the penalty for the

CPU core that the VM resides on (Pk in Eq. 18). In Lines 12 to 16, it randomly

chooses a parameter (or parameters) of the worst VM identified in Line 11 with a

certain mutation rate Pm and alters its/their value(s) at random based on poly-

nomial mutation [6]. (mutate() in Line 14 implements polynomial mutation.) Key

ideas behind active-guided mutation are to (1) identify the worst-performing VM in

each application and alter its deployment strategy in the hope that its performance

improves and (2) record inferior VM deployment strategies as penalties through

generations and use the penalties to help strategies escape from local optima and

improve their performance.

Mutation is followed by a game performed between the loser and the mutated

winner (Line 17). This is intended to select the top two of three strategies (the

winner, loser and mutated winner). The worst of the three strategies disappears in

the population.

Once all strategies play games in the population, AGEGT identifies a feasible

strategy whose population share (xs) is the highest and determines it as a dominant
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strategy (di) (Lines 22 to 26). AGEGT deploys three VMs for an application in

question based on the dominant strategy (Line 27).

Another variant EGT-GLS is studies in this paper shown in Algorithm 2. The

main procedure is similar to AGEGT, but the replicate is mutated with polynomial

mutation (Lines 10 to 18) [6] instead of guided mutation and also EGT-GLS per-

forms Guided local search shown in Algorithm ?? to improve the dominant strategy

after a dominant strategy is determined(Line 26). Polynomial mutation randomly

chooses a parameter (or parameters) in a given strategy with a certain mutation

rate Pm and alters its/their value(s) at random (Lines 12 to 14).

5. Stability Analysis

This section analyzes AGEGT’s stability (i.e., reachability to at least one of Nash

equilibria) by proving the state of each population converges to an evolutionarily

stable equillibrium. The proof consists of three steps: (1) designing a set of differ-

ential equations that describe the dynamics of the population state (or strategy

distribution), (2) proving an strategy selection process has equilibria and (3) prov-

ing the the equilibria are asymptotically stable (or evolutionarily stable) . The proof

uses the following terms and variables.

• S denotes the set of available strategies. S∗ denotes a set of strategies that

appear in the population.

• X(t) = {x1(t), x2(t), · · · , x|S∗|(t)} denotes a population state at time t

where xs(t) is the population share of a strategy s ∈ S.
∑

s∈S∗(xs) = 1.

• Fs is the fitness of a strategy s. It is a relative value determined in a game

against an opponent based on the dominance relationship between them.

The winner of a game earns a higher fitness than the loser.

• psk = xk · φ(Fs − Fk) denotes the probability that a strategy s is replicated

by winning a game against another strategy k. φ(Fs−Fk) is the probability

that the fitness of s is higher than that of k.

The dynamics of the population share of s is described as:

ẋs =
∑

k∈S∗,k 6=s

{xspsk − xkpks}

= xs
∑

k∈S∗,k 6=s

xk{φ(Fs − Fk)− φ(Fk − Fs)} (20)

Note that if s is strictly dominated, xs(t)t→∞ → 0.

Theorem 2. The state of a population converges to an equilibrium.

Proof. It is true that different strategies have different fitness values. In other

words, only one strategy has the highest fitness among others. Given Theorem 1,
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assuming that F1 > F2 > · · · > F|S∗|, the population state converges to an equilib-

rium: X(t)t→∞ = {x1(t), x2(t), · · · , x|S∗|(t)}t→∞
= {1, 0, · · · , 0}.

Theorem 3. The equilibrium found in Theorem 2 is asymptotically stable.

Proof. At the equilibrium X = {1, 0, · · · , 0}, a set of differential equations can be

downsized by substituting x1 = 1− x2 − · · · − x|S∗|

żs = zs[cs1(1− zs) +

|s∗|∑
i=2,i6=s

zi · csi], s, k = 2, ..., |S∗| (21)

where csk ≡ φ(Fs − Fk)− φ(Fk − Fs)) and Z(t) = {z2(t), z3(t),

· · · , z|S∗|(t)} denotes the corresponding downsized population state. Given Theo-

rem 1, Zt→∞ = Zeq = {0, 0, · · · , 0} of (|S∗| − 1)-dimension.

If all Eigenvalues of Jaccobian matrix of Z(t) has negative real parts, Zeq is

asymptotically stable. The Jaccobian matrix J ’s elements are

Jsk =

[
∂żs
∂zk

]
|Z=Zeq

=

[
∂zs[cs1(1− zs) +

∑|S∗|
i=2,i6=s zi · csi]

∂zk

]
|Z=Zeq

(22)

for s, k = 2, ..., |S∗|

Therefore, J is given as follows, where c21, c31, · · · , c|S∗|1 are J ’s Eigenvalues.

J =


c21 0 · · · 0

0 c31 · · · 0
...

...
. . .

...

0 0 · · · c|S∗|1

 (23)

cs1 = −φ(F1 − Fs) < 0 for all s; therefore, Zeq = {0, 0, · · · , 0} is asymptotically

stable.

6. Simulation Evaluation

This section evaluates AGEGT’s performance, particularly in its optimality and

stability, through simulations.

6.1. Simulation Configurations

This paper simulates a cloud data center that consists of 100 hosts in a 10 × 10

grid topology. The grid topology is chosen based on recent findings on efficient
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topology configurations in clouds [13, 14]. This paper also assumes five different

types of applications. Table 1 shows the message arrival rate (i.e., the number of

incoming messages per second) and message processing time (in second) for each of

the five application types. This configuration follows Zipf’s law [21,26]. This paper

simulates 40 application instances for each type (200 application instances in total).

Application type 1 2 3 4 5

Message arrival rate (λ in Eq. 6) 110 70 40 20 10

Web server (T p
1 in Eq. 4) 0.02 0.02 0.04 0.04 0.08

App server (T p
2 in Eq. 4) 0.03 0.08 0.04 0.13 0.11

DB server (T p
3 in Eq. 4) 0.05 0.05 0.12 0.08 0.11

Table 1. Message Arrival Rate and Message Processing Time

Each host is simulated to operate an Intel Core2 Quad Q6700 CPU, which is

a quad-core CPU that has five frequency and voltage operating points (P-states).

Table 2 shows the power consumption at each P-state under the 0% and 100% CPU

utilization [12]. This setting is used in Equation 7 to compute power consumption

objective values.

P-state Frequency (q) P q
idle P q

max

p1 1.600 GHz 82.70 W 88.77 W

p2 1.867 GHz 82.85 W 92.00 W

p3 2.113 GHz 82.91 W 95.50 W

p4 2.400 GHz 83.10 W 99.45 W

p5 2.670 GHz 83.25 W 103.00 W

Table 2. P-states in Intel Core2 Quad Q6700

Table 3 shows the parameter settings for AGEGT. Mutation rate is set to 1/v

where v is the number of parameters in a strategy. (v = 5 as shown in Eq. 16).

Every simulation result is the average with 20 independent simulation runs.

Comparative performance study is carried out for AGEGT and its two variants:

EGT-GLS and EGT. Algorithm 2 shows the procedure of EGT-GLS, which is sim-

ilar to AGEGT. EGT-GLS performs polynomial mutation instead of active-guided

mutation and GLS-based local search in each generation (i.e., localSearch() in Al-

gorithm 2). The local search operator is designed to improve the performance of the

dominance strategy di (Algorithm 3). It creates Q mutants of di iteratively using

GLS and replaces di with a mutant if the mutant wins over di in a game. Through

Q iterations, the local search operator keeps the best mutant discovered so far and

mutates it when mutation occurs. Another variant, EGT, performs Algorithm 2
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Parameter Value

Number of hosts (M) 100

Number of cores per CPU/host (O in Eq. 6) 4

Number of applications (N) 200

Number of generations (Gmax in Algo. 1) 500

Population size (|Pi| in Algo. 1) 100

Penalization rate (λ in Algo. 1) 0.5

Mutation rate (Pm in Algo. 1) 1/v

Number of local search iterations (Q in Algo. 3) 20

Reference point for HV computation

(xr in Eq. 17)

fC=400, fB=4k,

fPC=40k, fRT =400

Table 3. Parameter Settings for AGEGT

with local search disabled.

AGEGT is also compared with NSGA-II, which is a well-known multiobjective

evolutionary algorithm [6]. AGEGT and NSGA-II use the same parameter settings

shown in Table 3. All other NSGA-II settings are borrowed from [6]. Both AGEGT

and NSGA-II are implemented with jMetal [9]. Moreover, AGEGT is evaluated

in comparison to well-known heuristics, first-fit and best-fit algorithms (FFA and

BFA), which have been widely used for adaptive cloud application deployment [2,

11,18,19].

Table 4 shows two different combinations of constraints: no constraints (C∞)

and moderate (CM ). CM is used unless otherwise noted.

Constraint Combinations CC (%) CB (Kbps) CPC (W) CRT (ms)

C∞ ∞ ∞ ∞ ∞
CM 100 1,000 400 40

Table 4. Constraint Combinations

6.2. Simulation Results

Table 5 examines how a mutation-related parameter, called distribution index (ηm
in [6]), impacts the performance of AGEGT, EGT-GLS and EGT. This parameter

controls how likely a mutated strategy is similar to its original. (A higher distribu-

tion index makes a mutant more similar to its original.) In Table 5, the performance

of EGT is evaluated with the hypervolume measure that a set of dominant strategies

yield in the 500th generation. The hypervolume metric indicates the union of the

volumes that a given set of solutions dominates in the objective space [35]. A higher

hypervolume means that a set of solutions is more optimal. As shown in Table 5,
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Algorithm 2 Evolutionary Process in EGT-GLS
1: g = 0
2: Randomly generate N populations for N applications: P = {P1,P2, ...,PN}
3: while g < Gmax do
4: for each population Pi randomly selected from P do
5: P ′i ← ∅
6: for j = 1 to |Pi|/2 do
7: s1 ← randomlySelect(Pi)
8: s2 ← randomlySelect(Pi)
9: {winner, loser} ← performGame(s1, s2)

10: replica ← replicate(winner)
11: for each parameter v in replica do
12: if random() ≤ Pm then
13: replica ← mutate(replica, v)
14: end if
15: end for
16: winner′ ← performGame(loser, replica)
17: Pi \ {s1, s2}
18: P ′i ∪ {winner, winner′}
19: end for
20: Pi ← P ′i
21: di ← argmaxs∈Pi

xs
22: while di is infeasible do
23: Pi \ {di}
24: di ← argmaxs∈Pi

xs
25: end while
26: di ← localSearch(di)
27: Deploy VMs for the current application based on di.
28: end for
29: g = g + 1

30: end while

EGT yields the best performance with the distribution index value of 40. Thus,

this parameter setting is used for EGT, EGT-GLS and AGEGT in all successive

simulations.

Distribution Index HV Distribution Index HV

30 0.823 35 0.828

40 0.830 45 0.827

50 0.825

Table 5. Impacts of Distribution Index Values on Hypervolume Performance

Fig. 3 studies how AGEGT, EGT-GLS and EGT evolve their hypervolume

through generations. Figs. 4 to 6 show the average, maximum and minimum objec-

tive values of AGEGT, EGT-GLS and EGT for two different constraints combina-
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Algorithm 3 Guided Local Search (localSearch())
Input: di: Dominant strategy to improve

Output: Improved dominant strategy

1: for i = 1 to Q do
2: for each t-th tier VM in di do

3: RankedVM [] ← utilt(CPU,BW,EN,RT )(strategy)
4: end for

5: PenalizedVM ← RankedVM [3]

6: for each parameter v in PenalizedVM do
7: if random() ≤ Pm then

8: replica ← mutate(di, v)

9: end if
10: end for

11: di ← performGame(replica, di)

12: end for

13: return di

tion (C∞ and CM ) in the last generation. These figures demonstrate that AGEGT

outperforms EGT-GLS and EGT in both objective values and convergence speed.

Active-guided mutation aids AGEGT to gain performance improvement effectively.

All three algorithms perform better under constraints. This means that constraint

handling works properly in games. All successive simulations use the moderate con-

straint combination (CM ).

Fig. 3. Comparison of AGEGT, EGT-GLS and EGT in Hypervolume

Table 6 compares AGEGT with NSGA-II, FFA and BFA. It shows the minimum,

average and maximum objective values in the last generation. AGEGT outperforms

NSGA-II in the average CPU allocation, bandwidth consumption and power con-

sumption by 50.37%, 19.28% and 77.63%, respectively. In response time, NSGA-II

outperforms AGEGT by 47.17%. On average, AGEGT outperforms NSGA-II by
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(a) CPU allocation (b) Bandwidth alloca-
tion

(c) Power consumption (d) Response time

Fig. 4. Objective Values of AGEGT under Two Constraint Combinations

(a) CPU allocation (b) Bandwidth alloca-

tion

(c) Power consumption (d) Response time

Fig. 5. Objective Values of EGT-GLS under Two Constraint Combinations

(a) CPU allocation (b) Bandwidth alloca-
tion

(c) Power consumption (d) Response time

Fig. 6. Objective Values of EGT under Two Constraint Combinations

25.02%. FFA and BFA produce two extreme results. FFA yields the lowest power

consumption (59.61 Watts) because it is designed to deploy VMs on the minimum

number of hosts; however, it sacrifices the other objectives. BFA performs the best

in CPU allocation (28.94 %) because it is designed to deploy VMs on the hosts that

maintain higher resource availability. AGEGT maintains balanced objective values

in between FFA and BFA while performing better in response time, CPU allocation

and bandwidth allocation.

Table 8 shows the variance of objective values that AGEGT and NSGA-II yield

at the last generation in 20 different simulation runs. A lower variance means higher

stability (or higher similarity) in objective value results (i.e., lower oscillations in
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Objectives Min Avg Max

CPU

allocation

(%/app)

AGEGT 15.00 15.05 15.12

NSGA-II 28.86 30.29 31.35

FFA 28.68 28.68 28.68

BFA 28.94 28.94 28.94

Bandwidth

allocation

(Kbps/app)

AGEGT 238.55 238.65 238.71

NSGA-II 278.32 288.27 295.89

FFA 1186 1186 1186

BFA 1200 1200 1200

Power

consumption

(W/app)

AGEGT 285.71 286.72 288.60

NSGA-II 1245.15 1246 1246.92

FFA 59.12 59.61 60.02

BFA 341.74 341.85 341.95

Response

time

(msec/app)

AGEGT 22.77 22.78 22.80

NSGA-II 11.56 11.79 12.04

FFA 109.06 109.06 109.06

BFA 92.09 92.09 92.09

Table 6. Comparison of AGEGT, NSGA-II, FFA and BFA in Objective Values

objective value results) among different simulation runs. AGEGT maintains sig-

nificantly higher stability than NSGA-II in all objectives except response time.

AGEGT’s average stability is 98.86% higher than NSGA-II’s. This result exhibits

AGEGT’s stability property (i.e. ability to seek evolutionarily stable strategies),

which NSGA-II does not have.

Objectives AGEGT NSGA-II Diff (%)

CPU allocation 0.06 2.16 97.22%

Bandwidth allocation 0.001 5.599 99.98%

Power consumption 0.010 0.747 98.66%

Response time 0.001 0.239 99.58%

Average Difference (%) – – 98.86%

Table 7. Stability of Objective Values in AGEGT and NSGA-II

Fig. 7 shows two three-dimensional objective spaces that plot a set of dominant

strategies obtained from individual populations at each generation. Each blue dot

indicates the average objective values that dominant strategies yield at a particu-

lar generation in 20 simulation runs. The trajectory of blue dots illustrates a path

through which AGEGT’s strategies evolve and improve objective values. Gray and

red dots represent 20 different sets of objective values at the first and last genera-
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Objectives AGEGT NSGA-II(HV) NSGA-II(Best) Max Avg Min

CPU allocation 0.15 0.207 0.156 0.45 0.29 0.15

Bandwidth allocation 0.238 0.282 0.15 0.45 0.288 0.15

Power consumption 0.143 0.498 0.497 0.498 0.498 0.496

Response time 0.227 0.11 0.18 0.18 0.11 0.06

Euclidean Distance 0.388 0.758 0.572 0.827 0.653 0.542

Manhattan Distance 0.618 1.097 0.983 1.578 1.186 0.983

Hypervolume 0.835 0.834 0.86 - 0.813 -

Table 8. Distance metric of normalized Objective Values in AGEGT and NSGA-II

tion in 20 simulation runs, respectively. While initial (gray) dots disperse (because

strategies are generated at random initially), final (red) dots are overlapped in a

small region. Consistent with Table 8, Fig. 7 verifies AGEGT’s stability: reachability

to at least one Nash equilibria regardless of the initial conditions.

(a) CPU allocation, Bandwidth allocation and

Energy consumption

(b) CPU allocation, Bandwidth allocation and

Response time

Fig. 7. Trajectory of AGEGT’s Solution through Generations

7. Related Work

Numerous research efforts have been made to study heuristic algorithms for appli-

cation placement problems in clouds (e.g., [2, 4, 11, 17–19, 29, 32]). Most of them

assume single-tier application architecture and considers a single objective. For ex-

ample, in [4,17,29,32], only energy saving is considered as the objective. In contrast,

AGEGT assumes a multi-tier application architecture (i.e., three tiers in an appli-

cation) and considers multiple objectives. It is designed to seek a trade-off solution
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among conflicting objectives.

Game theoretic algorithms have been used for a few aspects of cloud computing;

e.g., application placement [8, 16,33], task allocation [24] and data replication [15].

In [8, 16, 33], greedy algorithms seek equilibria in application placement problems.

This means they do not attain the stability to reach equilibria as does.

Several genetic algorithms (e.g., [25, 31]) and other stochastic optimization al-

gorithms (e.g., [3, 10]) have been studied to solve application placement problems

in clouds. They seek the optimal placement solutions; however, they do not con-

sider stability. In contrast, AGEGT aids applications to seek evolutionarily stable

solutions and stay at equilibria.

This paper reports a set of extensions to the authors’ prior work [22]. For the

problem formulation, this paper considers two extra optimization constraints in ad-

dition to the two constraints considered in [22]. As for the algorithmic design, this

paper enhances the way to compare two strategies in a game with the hypervolume

metric. This paper also investigates active-guided mutation, which is out of the

scope of [22]. To the best of the authors’ knowledge, this paper is the first attempt

to integrate GLS with an evolutionary game theoretic algorithm. For simulation

evaluation, this paper conducts more comprehensive comparative study than [22]

with extra benchmark algorithms (FFA, BFA and EGT-GLS) and a modern eval-

uation metric, the hypervolume metric. The algorithm proposed in [22] is basically

same as EGT, which this paper uses in its comparative study.

8. Conclusions

This paper proposes and evaluates AGEGT, an evolutionary game theoretic frame-

work for adaptive and stable VM deployment in DVFS-enabled clouds. It the-

oretically guarantees that every application (i.e., a set of VMs) seeks an evolu-

tionarily stable deployment strategy, which is an equilibrium solution under given

workload and resource availability. Simulation results verify that AGEGT performs

VM deployment in an adaptive and stable manner. AGEGT outperforms existing

well-known heuristics in the quality and stability of VM deployment. For example,

AGEGT outperforms NSGA-II by 25% in deployment quality and 98% in deploy-

ment stability.
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