
Configuring Cloud-integrated Body Sensor Networks with
Evolutionary Algorithms

Yi Cheng-Ren
Department of Computer Science
Univ. of Massachusetts, Boston

Boston, MA, 02125, USA
yiren001@cs.umb.edu

Junichi Suzuki
Department of Computer Science
Univ. of Massachusetts, Boston

Boston, MA, 02125, USA
jxs@cs.umb.edu

Dũng H. Phan
Department of Computer Science
Univ. of Massachusetts, Boston

Boston, MA, 02125, USA
phdung@cs.umb.edu

Shigo Omura
OGIS International, Inc.

San Mateo, CA 94402, USA
omura@ogis-international.com

Ryuichi Hosoya
OGIS International, Inc.

San Mateo, CA 94402, USA
hosoya@ogis-international.com

ABSTRACT
This paper investigates a few evolutionary game theoretic al-
gorithms to configure cloud-integrated body sensor networks
(BSNs) in an adaptive and stable manner with a multi-tier
architecture called Body-in-the-Cloud (BitC). BitC allows
BSNs to adapt their configurations (sensing intervals and
sampling dates as well as data transmission intervals) to
operational conditions (e.g., data request patterns) with re-
spect to multiple conflicting performance objectives such as
resource consumption and data yield. BitC theoretically
guarantees that each BSN performs an evolutionarily sta-
ble configuration strategy, which is an equilibrium solution
under given operational conditions. Simulation results ver-
ify this theoretical analysis; BSNs seek equilibria to perform
adaptive and evolutionarily stable configuration strategies.
BitC outperforms an existing well-known genetic algorithm
in the quality, stability and computational cost in configur-
ing BSNs.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; I.2.8 [Artificial Intelligence]:
Problem Solving, Control Methods, and Search—Heuristic
methods

General Terms
Design, Algorithms

1. INTRODUCTION
This paper considers cloud-integrated body sensor net-

works (BSNs), which virtualize physical on/in-body sensors

.

into clouds, formulates a configuration problem in a multi-
tier architecture called Body-in-the-Cloud (BitC) and inves-
tigates a configuration problem in BitC with a few evolution-
ary algorithms. BitC consists of the sensor, edge and cloud
layers. The sensor layer is a collection of sensors and sensor
nodes in BSNs. Each BSN operates sensor nodes, each of
which is equipped with sensors and wirelessly connected to
a dedicated per-patient device or a patient’s computer (e.g.,
smartphone or tablet machine) that serves as a sink node.
The edge layer consists of sink nodes, which collect sensor
data from sensor nodes in BSNs. The cloud layer consists of
cloud environments that host virtual sensors, which are vir-
tualized counterparts (or software counterparts) of physical
sensors in BSNs. Virtual sensors collect sensor data from
sink nodes in the edge layer and store those data for future
use. The cloud layer also hosts various applications that ob-
tain sensor data from virtual sensors and aid medical staff
(e.g., clinicians, hospital/visiting nurses and caregivers) to
share sensor data for clinical observation and intervention.

BitC performs push-pull hybrid communication between
its three layers. Each sensor node periodically collects data
from sensors attached to it based on sensor-specific sensing
intervals and sampling rates and transmits (or pushes) those
collected data to a sink node. The sink node in turn forwards
(or pushes) incoming sensor data periodically to virtual sen-
sors in clouds. When a virtual sensor does not have sensor
data that a cloud application requires, it obtains (or pulls)
that data from a sink node or a sensor node. This push-pull
communication is intended to make as much sensor data as
possible available for cloud applications by taking advan-
tage of push communication while allowing virtual sensors
to pull any missing or extra data anytime in an on-demand
manner. For example, when an anomaly is found in pushed
sensor data, medical staff may pull extra data in a higher
temporal resolution to better understand a patient’s medi-
cal condition. Given a sufficient amount of data, they may
perform clinical intervention, order clinical cares, dispatch
ambulances or notify family members of patients.

This paper focuses on configuring BSNs in BitC by tuning
sensing intervals and sampling rates for sensors as well as
data transmission intervals for sensor and sink nodes, and
studies two properties in configuring BSNs:

• Adaptability: Adjusting BSN configurations accord-

ing to operational conditions (e.g., data request pat-
terns placed by cloud applications and availability of
resources such as bandwidth and memory) with re-
spect to performance objectives such as bandwidth
consumption, energy consumption and data yield.

• Stability: Minimizing oscillations (non-deterministic in-
consistencies) in making adaptation decisions.

BitC leverages an evolutionary game theoretic approach
to configure BSNs. Each BSN maintains a set (or a popu-
lation) of configuration strategies. BitC theoretically guar-
antees that, through a series of evolutionary games between
BSN configuration strategies, the population state (i.e., the
distribution of strategies) converges to an evolutionarily sta-
ble equilibrium regardless of the initial state. (A domi-
nant strategy in the evolutionarily stable population state
is called an evolutionarily stable strategy.) In this state, no
other strategies except an evolutionarily stable strategy can
dominate the population. Given this theoretical property,
BitC allows each BSN to operate at equilibria by using an
evolutionarily stable strategy to configure BSNs in a deter-
ministic (i.e., stable) manner. Simulation results verify this
theoretical analysis; BSNs seek equilibria to perform adap-
tive and evolutionarily stable configuration strategies. This
paper evaluates three algorithmic variants in BitC and com-
pares them with NSGA-II, a well-known multiobjective ge-
netic algorithm. BitC outperforms an existing well-known
genetic algorithm in the quality, stability and computational
cost in configuring BSNs.

Figure 1: A Push-Pull Hybrid Communication in BitC

2. SYSTEM ARCHITECTURE
BitC consists of the following three layers (Fig. 1).
Sensor Layer: operates one or more BSNs on a per-

patient basis (Fig. 1). Each BSN contains one or more sensor
nodes in a certain topology. This paper assumes the star
topology. Each sensor node is equipped with different types
of sensors. It is assumed to be battery-operated. (It has
limited energy supply.) It maintains a sensing interval and a
sampling rate for each sensor attached to it. Upon a sensor
reading, it stores collected data in its own memory space.
Given a data transmission interval, it periodically flushes all
data stored in its memory space and transmits the data to
a sink node.

Edge Layer: consists of sink nodes, each of which par-
ticipates in a certain BSN and receives sensor data peri-
odically from sensor nodes in the BSN. A sink node stores

incoming sensor data in its memory space and periodically
flushes stored data to transmit (or push) them to the cloud
layer. It maintains the mappings between physical and vir-
tual sensors. In other words, it knows the origins and des-
tinations of sensor data. Different sink nodes have different
data transmission intervals. A sink node’s data transmission
interval can be different from the ones of sensor nodes in the
same BSN. Sink nodes are assumed to have limited energy
supplies through batteries.

In addition to pushing sensor data to a virtual sensor,
each sink node receives a pull request from a virtual sensor
when the virtual sensor does not have data that a cloud
application(s) requires. If the sink node has the requested
data in its memory, it returns that data. Otherwise, it issues
another pull request to a sensor node that is responsible
for the requested data. Upon receiving a pull request, the
sensor node returns the requested data if it has the data
in its memory. Otherwise, it returns an error message to a
could application.

Cloud Layer: operates on clouds to host applications
that allow medical staff to place continuous sensor data re-
quests on virtual sensors in order to monitor patients. If
a virtual sensor has data that an application requests, it
returns that data. Otherwise, it issues a pull request to a
sink node. While push communication carries out a one-way
upstream travel of sensor data, pull communication incurs
a round trip for requesting sensor data and receiving that
data (or an error message).

3. PROBLEM STATEMENT
This section describes a BSN configuration problem for

which BitC seeks equilibrium solutions. Each BSN config-
uration consists of four types of parameters (i.e., decision
variables): sensing intervals and sampling rates for sensors
as well as data transmission intervals for sensor and sink
nodes. The problem is stated with the following symbols.

• B = {b1, b2, ..., bi, ..., bN} denotes the set of N BSNs,
each of which operates for a patient.

• Each BSN bi consists of a sink node (denoted by mi)
and M sensor nodes: bi = {hi1, hi2, ..., hij , ..., hiM}.
Each sensor node hij has L sensors: hij = {sij1, sij2, ..., sijk, ..., sijL}.
oijk is the data transmission interval for hij to transmit
sensor data collected from sijk. pijk and qijk are the
sensing interval and sampling rate for sijk. Sampling
rate is defined as the number of sensor data samples
collected in a unit time. Each sensor node stores col-
lected sensor data in its memory space until its next
push transmission. If the memory becomes full, it per-
forms FIFO (First-In-First-Out) data replacement. In
a push transmission, it flushes and sends out all data
stored in its memory.

• omi denotes the data transmission interval for mi to
forward (or push) sensor data incoming from sensor
nodes in bi In between two push transmissions, mi

stores sensor data from bi in its memory. It performs
FIFO data replacement if the memory becomes full. In
a push transmission, it flushes and sends out all data
stored in the memory.

• Rijk = {rijk1, rijk2, ..., rijkr, ..., rijk|Rijk|} denotes the
set of sensor data requests that cloud applications is-
sue to the virtual counterpart of sijk (s′ijk) during the
time period of W in the past. Each request rijkr is

characterized by its time stamp (tijkr) and time win-
dow (wijkr). It retrieves all sensor data available in
the time interval [tijkr − wijkr, tijkr]. If s′ijk has at
least one data in the interval, it returns those data;
otherwise, it issues a pull request to mi.

• Rm
ijk ∈ Rijk denotes the set of sensor data requests

for which a virtual sensor s′ijk has no data. |Rm
ijk|

indicates the number of pull requests that s′ijk issues
to mi. In other words, Rijk \ Rm

ijk is the set of sensor
data requests that s′ijk fulfills regarding sijk.

• Rs
ijk ∈ Rm

ijk ∈ Rijk denotes the set of sensor data
requests for which mi has no data. |Rs

ijk| indicates
the number of pull requests that mi issues to hij for
collecting data from sijk. Rm

ijk\Rs
ijk is the set of sensor

data requests that mi fulfills regarding sijk.

This paper considers four performance objectives: band-
width consumption between the edge and cloud layers (fB),
energy consumption of sensor and sink nodes (fE), request
fulfillment for cloud applications (fR) and data yield for
cloud applications (fD). The first two objectives are to be
minimized while the others are to be maximized.

The bandwidth consumption objective (fB) is defined as
the total amount of data transmitted per a unit time be-
tween the edge and cloud layers. This objective impacts
the payment for bandwidth consumption based on a cloud
operator’s pay-per-use billing scheme. It also impacts the
lifetime of sink nodes. fB is computed as follows.

fB =
1

W

N∑
i=1

M∑
j=1

L∑
k=1

(cijkdijk)

+
1

W

N∑
i=1

M∑
j=1

L∑
k=1

|Rm
ijk|∑

r=1

(φijkrdijk + dr)

+
1

W

N∑
i=1

M∑
j=1

L∑
k=1

|Rs
ijk|∑

r=1

er(|Rs
ijk| − ηijkr) (1)

The first and second terms indicate the bandwidth con-
sumption by one-way push communication from the edge
layer to the cloud layer and two-way pull communication
between the cloud and edge layers, respectively. cijk de-
notes the number of sensor data that sijk generates and
sink nodes in turn push to the cloud layer during W . dijk
denotes the size of each sensor data (in bits) that sijk gen-
erates. It is currently computed as: qijk × 16 bits/sample.
φijkr denotes the number of sensor data that a pull request
r ∈ Rm

ijk can collect from sink nodes (φijkr = |Rm
ijk \Rs

ijk|).
dr is the size of a pull request transmitted from the cloud
layer to the edge layer. The third term in Eq. 1 indicates the
bandwidth consumption by the error messages that sensors
generate because they fail to fulfill pull requests. ηijkr is
the number of sensor data that a pull request r ∈ Rs

ijk can
collect from sensor nodes. er is the size of an error message.

The energy consumption objective (fE) is defined as the
total amount of energy that sensor and sink nodes consume
for data transmissions during W . It impacts the lifetime of
sensor and sink nodes. It is computed as follows.

fE =

N∑
i=1

M∑
j=1

L∑
k=1

W

oijk
etdijk +

N∑
i=1

M∑
j=1

L∑
k=1

|Rs
ijk|∑

r=1

etηijkr(dijk + d′r)

+

N∑
i=1

M∑
j=1

L∑
k=1

W

omi

etdijk +

N∑
i=1

M∑
j=1

L∑
k=1

|Rm
ijk|∑

r=1

etφijkr(dijk + dr)

+ 2×
N∑
i=1

M∑
j=1

L∑
k=1

|Rs
ijk|∑

r=1

eter(|Rs
ijk| − ηijkr) (2)

The first and second terms indicate the energy consump-
tion by one-way push communication from the sensor layer
to the edge layer and two-way pull communication between
the edge layer and the sensor layer, respectively. et denotes
the amount of energy (in Watts) that a sensor or sink node
consumes to transmit a single bit of data. d′r denotes the
size of a pull request from the edge layer to the sensor layer.
The third and fourth terms indicate the energy consump-
tion by push and pull communication between the edge and
cloud layer, respectively. The fifth term indicates the energy
consumption for transmitting error messages on sensor and
sink nodes.

The request fulfillment objective (fR) is the ratio of the
number of fulfilled requests over the total number of re-
quests:

fR =

∑N
i=1

∑M
j=1

∑L
k=1

∑|Rijk|
r=1 IRijk

|Rijk|
× 100 (3)

IRijk = 1 if a request r ∈ Rijk obtains at least one sensor
data; otherwise, IRijk = 0.

The data yield objective (fY) is defined as the total amount
of data that cloud applications gather for their users. This
objective impacts the informedness and situation awareness
for application users. It is computed as follows.

fY =

N∑
i=1

M∑
j=1

L∑
k=1

|Rm
ijk|∑

r=1

φijkr +

N∑
i=1

M∑
j=1

L∑
k=1

|Rs
ijk|∑

r=1

ηijkr + cijk

(4)

BitC considers four constraints. The first constraint (CE)
is the upper limit for energy consumption: fE < CE . A
violation for the constraint (gE) is computed as gE = IE ×
(fE − CE) where IE = 1 if fE > CE ; otherwise IE = 0.

The second constraint (CY) is the lower limit for data
yield: fY > CY . A constraint violation (gY) is computed as
gY = IY × (CY − fY) where IY = 1 if fY < CY ; otherwise
IY = 0.

The third constraint (CR) is the lower limit for request
fulfillment: fR > CR. The constraint violation in request
fulfillment (gR) is computed as gR = IR × (CR − fR) where
IR = 1 if fR < CR; otherwise IR = 0.

The fourth constraint (CB) is the upper limit for band-
width consumption: fB < CB . A violation for this con-
straint (gB) is computed as gB = IB × (fB − CB) where
IB = 1 if fB > CB ; otherwise IB = 0.

4. EVOLUTIONARY GAME THEORY
In a conventional game, the objective of a player is to

choose a strategy that maximizes its payoff in a single game.
In contrast, evolutionary games are played repeatedly by
players randomly drawn from a population [15]. This sec-
tion overviews key elements in evolutionary games: evolu-
tionarily stable strategies (ESS) and replicator dynamics.

4.1 Evolutionarily Stable Strategies (ESS)
Suppose all players in the initial population are programmed

to play a certain (incumbent) strategy k. Then, let a small
population share of players, x ∈ (0, 1), mutate and play a
different (mutant) strategy `. When a player is drawn for a
game, the probabilities that its opponent plays k and ` are
1−x and x, respectively. Thus, the expected payoffs for the
player to play k and ` are denoted as U(k, x`+(1−x)k) and
U(`, x`+ (1− x)k), respectively.

Definition 1. A strategy k is said to be evolutionarily
stable if, for every strategy ` 6= k, a certain x̄ ∈ (0, 1) exists,
such that the inequality

U(k, x`+ (1− x)k) > U(`, x`+ (1− x)k) (5)

holds for all x ∈ (0, x̄).
If the payoff function is linear, Equation 5 derives:

(1− x)U(k, k) + xU(k, `) > (1− x)U(`, k) + xU(`, `) (6)

If x is close to zero, Equation 6 derives either

U(k, k) > U(`, k) or U(k, k) = U(`, k) and U(k, `) > U(`, `) (7)
This indicates that a player associated with the strategy

k gains a higher payoff than the ones associated with the
other strategies. Therefore, no players can benefit by chang-
ing their strategies from k to the others. This means that
an ESS is a solution on a Nash equilibrium. An ESS is a
strategy that cannot be invaded by any alternative (mutant)
strategies that have lower population shares.

4.2 Replicator Dynamics
The replicator dynamics describes how population shares

associated with different strategies evolve over time [13]. Let
λk(t) ≥ 0 be the number of players who play the strategy
k ∈ K, where K is the set of available strategies. The

total population of players is given by λ(t) =
∑ |K|

k=1λk(t).
Let xk(t) = λk(t)/λ(t) be the population share of players
who play k at time t. The population state is defined by
X(t) = [x1(t), · · · , xk(t), · · · , xK(t)]. Given X, the expected
payoff of playing k is denoted by U(k,X). The population’s
average payoff, which is same as the payoff of a player drawn
randomly from the population, is denoted by U(X,X) =∑ |K|

k=1xk ·U(k,X). In the replicator dynamics, the dynamics
of the population share xk is described as follows. ẋk is the
time derivative of xk.

ẋk = xk · [U(k,X)− U(X,X)] (8)
This equation states that players increase (or decrease)

their population shares when their payoffs are higher (or
lower) than the population’s average payoff.

Theorem 1. If a strategy k is strictly dominated, then
xk(t)t→∞ → 0.

A strategy is said to be strictly dominant if its payoff is
strictly higher than any opponents. As its population share
grows, it dominates the population over time. Conversely, a
strategy is said to be strictly dominated if its payoff is lower
than that of a strictly dominant strategy. Thus, strictly
dominated strategies disappear in the population over time.

There is a close connection between Nash equilibria and
the steady states in the replicator dynamics, in which the
population shares do not change over time. Since no play-
ers change their strategies on Nash equilibria, every Nash
equilibrium is a steady state in the replicator dynamics. As
described in Section 4.1, an ESS is a solution on a Nash equi-
librium. Thus, an ESS is a solution at a steady state in the

replicator dynamics. In other words, an ESS is the strictly
dominant strategy in the population on a steady state.

BitC maintains a population of configuration strategies
for each BSN. In each population, strategies are randomly
drawn to play games repeatedly until the population state
reaches a steady state. Then, BitC identifies a strictly dom-
inant strategy in the population and configures a BSN based
on the strategy as an ESS.

5. BODY-IN-THE-CLOUD
BitC maintains N populations, {P1,P2, ...,PN}, for N

BSNs and performs games among strategies in each popula-
tion. Each strategy s(bi) specifies a particular configuration
for a BSN bi using four types of parameters: sensing inter-
vals and sampling rates for sensors (pijk and qijk) as well as
data transmission intervals for sink and sensor nodes (omi

and oijk).

s(bi) =
⋃

j∈1..M

⋃
k∈1..L

(omi , oijk, pijk, qijk) 1 < i < N (9)

Algorithm 1 shows how BitC seeks an evolutionarily stable
configuration strategy for each BSN through evolutionary
games. In the 0-th generation, strategies are randomly gen-
erated for each of N populations {P1,P2, ...,PN} (Line 2).
Those strategies may or may not be feasible. Note that a
strategy is said to be feasible if it violates none of four con-
straints described in Section 3.

In each generation (g), a series of games are carried out on
every population (Lines 4 to 25). A single game randomly
chooses a pair of strategies (s1 and s2) and distinguishes
them to the winner and the loser with respect to perfor-
mance objectives described in Section 3 (Lines 7 to 9). The
loser disappears in the population. The winner is replicated
to increase its population share and mutated with polyno-
mial mutation [4] (Lines 10 to 17). Mutation randomly
chooses a parameter (or parameters) in a given strategy with
a certain mutation rate Pm and alters its/their value(s) at
random (Lines 11 to 15).

Once all strategies play games in the population, BitC
identifies a feasible strategy with the highest population
share (xs) and determines it as a dominant strategy (di)
(Lines 20 to 24). BitC configures a BSN with parameters
contained in the dominant strategy (Line 25).

A game is carried out based on the superior-inferior re-
lationship between given two strategies and their feasibility
(performGame() in Algorithm 1). If a feasible strategy and
an infeasible strategy participate in a game, the feasible one
always wins over its opponent. If both strategies are feasible,
they are compared with one of the following three schemes
to select the winner.

• Pareto dominance (PD): This scheme is based on the
notion of dominance [12], in which a strategy s1 is said
to dominate another strategy s2 (denoted by s1 � s2)
if both of the following conditions hold:

– s1’s objective values are superior than, or equal
to, s2’s in all objectives.

– s1’s objective values are superior than s2’s in at
least one objectives.

Algorithm 1 Evolutionary Process in BitC

1: g = 0
2: Randomly generate the initial N populations for N

BSNs: P = {P1,P2, ...,PN}
3: while g < Gmax do
4: for each population Pi randomly selected from P do
5: P ′i ← ∅
6: for j = 1 to |Pi|/2 do
7: s1 ← randomlySelect(Pi)
8: s2 ← randomlySelect(Pi)
9: winner ← performGame(s1, s2)

10: replica ← replicate(winner)
11: for each parameter in replica do
12: if random() ≤ Pm then
13: replica ← mutate(winner)
14: end if
15: end for
16: Pi \ {s1, s2}
17: P ′i ∪ {winner, replica}
18: end for
19: Pi ← P ′i
20: di ← argmaxs∈Pixs
21: while di is infeasible do
22: Pi \ {di}
23: di ← argmaxs∈Pixs
24: end while
25: Configure a BSN in question based on di.
26: end for
27: g = g + 1
28: end while

The dominating strategy wins a game over the dom-
inated one. If two strategies are non-dominated with
each other, the winner is randomly selected.

• Hypervolume (HV): This scheme is based on the hy-
pervolume metric [17]. It measures the volume that a
given strategy (s) dominates in the objective space:

HV (s) = Λ
(⋃
{x′|s � x′ � xr}

)
(10)

Λ denotes the Lebesgue measure. xr is the reference
point placed in the objective space. A higher hypervol-
ume means that a strategy is more optimal. Given two
strategies, the one with a higher hypervolume value
wins a game. If both have the same hypervolume value,
the winner is randomly selected.

• Hybrid of Pareto comparison and hypervolume (PD-
HV): This scheme is a combination of the above two
schemes. First, it performs the Pareto dominance (PD)
comparison for given two strategies. If they are non-
dominated, the hypervolume (HV) comparison is used
to select the winner. If they still tie with the hyper-
volume metric, the winner is randomly selected.

If both strategies are infeasible in a game, they are com-
pared based on their constraint violation. A strategy s1 wins
a game over another strategy s2 if both of the following con-
ditions hold:

• s1’s constraint violation is lower than, or equal to, s2’s
in all constraints.

• s1’s constraint violation is lower than s2’s in at least
one constraints.

6. STABILITY ANALYSIS
This section analyzes BitC’s stability (i.e., reachability to

at least one of Nash equilibrium) by proving the state of
each population converges to an evolutionarily stable equi-
llibrium. The proof consists of three steps: (1) designing a
set of differential equations that describe the dynamics of
the population state, (2) proving an strategy selection pro-
cess has equilibria, and (3) proving the the equilibria are
asymptotically (or evolutionarily) stable. The proof uses
the following symbols:
• S denotes the set of available strategies. S∗ denotes a

set of strategies that appear in the population.
• X(t) = {x1(t), x2(t), · · · , x|S∗|(t)} denotes a popula-

tion state at time t where xs(t) is the population share
a strategy s ∈ S.

∑
s∈S∗(xs) = 1.

• Fs denotes the fitness of a strategy s. It is a rela-
tive value that is determined in a game against an op-
ponent based on the dominance relationship between
them (Algorithm ??). The winner of a game earns a
higher fitness than the loser.
• psk = xk · φ(Fs − Fk) denotes the probability that a

strategy s is replicated by winning a game against an-
other strategy k. φ(Fs − Fk) is the probability that
the fitness of s is higher than that of k.

The dynamics of the population share of s is described as:
ẋs =

∑
k∈S∗,k 6=s

{xspsk − xkpks}

= xs
∑

k∈S∗,k 6=s

xk{φ(Fs − Fk)− φ(Fk − Fs)} (11)

Note that if s is strictly dominated, xs(t)t→∞ → 0.

Theorem 2. The state of a population converges to an
equilibrium.

Proof. It is true that different strategies have different
fitness values. In other words, only one strategy has the
highest fitness among others. Given Theorem 1, assuming
that F1 > F2 > · · · > F|S∗|, the population state converges
to an equilibrium: X(t)t→∞ = {x1(t), x2(t), · · · , x|S∗|(t)}t→∞
= {1, 0, · · · , 0}.

Theorem 3. The equilibrium found in Theorem 2 is asymp-
totically stable.

Proof. At the equilibrium X = {1, 0, · · · , 0}, a set of
differential equations can be downsized by substituting x1 =
1− x2 − · · · − x|S∗|

żs = zs[cs1(1− zs) +

|s∗|∑
i=2,i6=s

zi · csi], s, k = 2, ..., |S∗| (12)

where csk ≡ φ(Fs−Fk)−φ(Fk−Fs)) and Z(t) = {z2(t), z3(t), · · · , z|S∗|(t)}
denotes the corresponding downsized population state. Given
Theorem 1, Zt→∞ = Zeq = {0, 0, · · · , 0} of (|S∗| − 1)-
dimension.

If all Eigenvalues of Jaccobian matrix of Z(t) has neg-
ative real parts, Zeq is asymptotically stable. The Jac-
cobian matrix J ’s elements are described as follows where
s, k = 2, ..., |S∗|.

Jsk =

[
∂żs
∂zk

]
|Z=Zeq

=

[
∂zs[cs1(1− zs) +

∑|S∗|
i=2,i 6=s zi · csi]

∂zk

]
|Z=Zeq

(13)

Therefore, J is given as follows, where c21, c31, · · · , c|S∗|1
are J ’s Eigenvalues.

J =


c21 0 · · · 0
0 c31 · · · 0
...

...
. . .

...
0 0 · · · c|S∗|1

 (14)

cs1 = −φ(F1−Fs) < 0 for all s; therefore, Zeq = {0, 0, · · · , 0}
is asymptotically stable.

7. SIMULATION EVALUATION
This section evaluates BitC through simulations and dis-

cusses how BitC configures BSNs under given operational
conditions (e.g., data request patterns placed by cloud ap-
plications and memory space availability in sink and sensor
nodes). Comparative performance study is carried out with
BitC’s three variants (PD, HV and PD-HV; c.f., Section 5)
and NSGA-II, which is a well-known multiobjective genetic
algorithm (EMOA) [4]. All four algorithms are implemented
with jMetal [5].

Table 1: Simulation Settings

Parameter Value

Duration of a simulation (W) 10,800 seconds (3 hours)
Number of BSNs (N) 10
Number of simulation runs 20
Number of nodes in a BSN (M) 3
Number of sensors in a node (L) 4
Memory space in a sensor node 2 GB
Memory space in a sink node 16 GB
Total number of data requests
from cloud applications

1,000

Size of a data request (dr and d′r) 100 bytes
Size of an error message (er) 250 bytes
Energy consumption for
a single bit of data (et)

0.001 Watt

Time window for a data request
to a body temp sensor

[0, 60 secs]

Time window for a data request
to an oximeter

[0, 60 secs]

Time window for a data request
to an acelerometer

[0, 1,800 secs]

Time window for a data request
to an ECG sensor

[0, 600 secs]

Number of generations (Gmax) 400
Population size (|Pi|) 100
Mutation rate (Pm) 1/v
Upper limit of
bandwidth consumption (CB)

100 Kbps

Lower limit of data yield (CY) 6000
Upper limit of
energy consumption (CE)

1 KWatts

Lower limit of
request fulfillment (CR)

95%

Simulations are configured with the parameters shown in
Table 1. Cloud applications issue 1,000 data requests during
three hours. Requests are uniformly distributed over virtual
sensors. Each sensor node contains four sensors: body tem-
perature sensor, oximeter, accelerometer and ECG sensor.
A time window is randomly set for each request to a sen-
sor. For example, it is set with the uniform distribution in
between 0 and 60 seconds for an oximeter. Mutation rate is
set to 1/v where v is the number of parameters in a strat-
egy. BitC and NSGA-II are equally configured except that
NSGA-II performs one-point crossover. (BitC does not have
the notion of crossover.) For example, BitC and NSGA-II
maintain the same population size (100) and perform poly-
nomial mutation in the same way. Every simulation result
is the average with 20 independent simulation runs.

Figure 2 shows how BitC variants (PD, HV and HV-PD)
and NSGA-II improve objective values change over gener-
ations. Four constraints (CB , CY , CE and CR in Table 1)

are enabled (Table 1). BitC variants and NSGA-II satisfy all
four constraints at the last generation. Figure 2 illustrates
that BitC and NSGA-II improve objective values subject to
given constraints by balancing the trade-offs among conflict-
ing objectives. For example, in Figures 2e and 2g, BitC and
NSGA-II improve both bandwidth consumption (fB) and
request fulfillment (fR) through generations while the two
objectives conflict with each other.

Table 2 compares BitC variants and NSGA-II with the no-
tion of Pareto dominance. (See Section 5 for the definition of
the Pareto dominance.) It shows how many of 100 NSGA-II
individuals dominate, are non-dominated with and are dom-
inated by each variant of BitC at the last generation. 22 and
18 NSGA-II individuals dominate PD and PD-HV, respec-
tively. 78 NSGA-II individuals are non-dominated with HV.
21 and 23 NSGA-II individuals are dominated by PD and
PD-HV, respectively. Given these results, PD-HV yields the
highest performance among three BitC variants and outper-
forms NSGA-II.

Table 2: Dominance Comparison of BitC Variants and NSGA-II

PD HV PD-HV

of NSGA-II individuals that dominate: 22 16 18
of NSGA-II individuals that are
non-dominated with:

57 78 59

of NSGA-II individuals that are
dominated by:

21 6 23

Table 3 compares BitC variants and NSGA-II with the
hypervolume metric. (See Section 5 for the definition of
hypervolume.) It shows the hypervolume that each BitC
variant yields at the last generation as well as the average
hypervolume that 100 NSGA-II individuals yield at the last
generation. Hypervolume is computed with each objective
normalized to [0, 1]. (The value range of hypervolume is
[0, 1].) BitC variants produce higher hypervolume values
than NSGA-II (0.84). Among those variants, the HV variant
yields the highest hypervolume (0.912).

Table 3: Comparison of BitC Variants and NSGA-II in Hyper-
volume

Algorithms Hypervolume

BitC-PD 0.870
BitC-HV 0.912
BitC-PD-HV 0.903

NSGA-II 0.840

BitC yields a single set of objective values with dominant
strategies at each generation while NSGA-II yields 100 sets
of objective values with 100 individuals at each generation.
Therefore, in Tables 4 to 6, the BitC solution is evaluated
against an NSGA-II individual that is closest to the solu-
tion in the objective space. Tables 4 to 6 compare each
BitC variant and NSGA-II based on three different metrics:
objective values, hypervolume and Euclidean distance. For
NSGA-II, objective values are measured with an individual
that minimizes the Euclidean distance to the BitC solution
at the last generation. Hypervolume is measured with the
NSGA-II individual. Distance is measured in between the
NSGA-II individual and the BitC solution. Distance is com-
puted with each objective normalized to [0, 1]. (The value
range of distance is [0,

√
2].)

As shown in Tables 4 to 6, each of BitC variants is non-
dominated with NSGA-II. NSGA-II yields slightly higher,

(a) PD (fB and fR) (b) PD (fE and fY) (c) HV (fB and fR) (d) HV (fE and fY)

(e) HV-PD (fB and fR) (f) HV-PD (fE and fY) (g) NSGA-II (fB and fR) (h) NSGA-II (fE and fY)

Figure 2: Objectives Values through Generations with BitC Variants and NSGA-II

yet very close, hypervolume measures than BitC variants.
(NSGA-II yields 0.2%, 0.1% and 0.4% higher hypervolume
than BitC’s PD, HV and PD-HV variants, respectively.)
The distance between BitC and NSGA-II is minimum (0.04)
with its HV variant. Given these results, BitC and NSGA-II
tie in a solution-to-solution basis.

Table 4: Comparison of BitC-PD and NSGA-II

Objectives NSGA-II BitC-PD

Bandwidth consumption (Kbps) 33.89 42.28
Energy consumption (W/sec) 0.51 0.58

Request fulfillment (%) 98 97.3
Data yield 58,014 58,139

Hypervolume 0.89 0.87

Euclidean distance 0.23

Table 5: Comparison of BitC-HV and NSGA-II

Objectives NSGA-II BitC-HV

Bandwidth consumption (Kbps) 28.49 27.491
Energy consumption (W/sec) 0.396 0.3874

Request fulfillment (%) 98 97.3
Data yield 52,910 52,356

Hypervolume 0.913 0.912

Euclidean Distance 0.04

Table 6: Comparison of BitC-PD-HV and NSGA-II

Objectives NSGA-II BItC-PD-HV

Bandwidth consumption (Kbps) 32.91 32.21
Energy consumption (W/sec) 0.41 0.44

Request fulfillment (%) 98 97.6
Data yield 56,497 58,479

Hypervolume 0.907 0.903

Euclidean Distance 0.08

Table 7 shows the variance of objective values that BitC
variants and NSGA-II yield at the last generation in 20 dif-
ferent simulation runs. A lower variance means higher stabil-

ity (or higher similarity) in objective value results (i.e., lower
oscillation in objective value results) among different simu-
lation runs. BitC variants maintain higher stability than
NSGA-II. BitC’s HV variant yields 38.15% higher stabil-
ity than NSGA-II. Table 7 exhibits BitC’s stability prop-
erty (i.e. its ability to seek evolutionarily stable strategies),
which NSGA-II does not have.

Table 7: Comparison in Performance Variance

Objectives NSGA-II PD HV PD-HV
Bandwidth

consumption
(Kbps)

3.12
3.00
(4%)

3.25
(-4%)

3.7
(-15.6%)

Energy
consumption

(W/sec)
0.115

0.06
(47.8%)

0.074
(35.6%)

0.045
(60.8%)

Request
fulfillment (%)

0.61
0.58
(3%)

0.35
(42.5%)

0.3
(50.8%)

Data yield 3958
1070

(73%)
849

(78.5%)
2746

(30.62%)

Average difference 31.95% 38.15% 31.65%

Table 8 shows the time required for BitC variants and
NSGA-II to execute a single simulation of 600 generations.
Simulations were carried out with a Java VM 1.7 on a Win-
dows 8.1 PC with a 3.6 GHz AMD A6-5400K APU and 6
GB memory space. Among BItC’s variants, its PD variant
is fastest, and its PD-HV variant is slowest. All variants run
faster than NSGA-II. The PD variant is 72.4% faster than
NSGA-II.

8. RELATED WORK
This paper extends a prior work on cloud-integrated BSNs [11].

Compared to [11], this paper formulates a more realistic
problem (Section 3) than the one in [11] by accommodating
parameters configurable in Simmer’s sensor nodes1. More-
over, this paper uses an evolutionary game theoretic algo-

1http://www.shimmersensing.com/

Table 8: Comparison in Execution Time

Algorithms Execution Time

BitC-PD
1 hour 38 minutes

(27.6%)

BitC-HV
1 hour 50 minutes

(31%)

BitC-PD-HV
2 hours 39 minutes

(44.9%)

NSGA-II 5 hours 54 minutes

rithm that possesses stability (i.e. reachability to at least
one Nash equilibria) in configuring BSNs while a genetic
algorithm is used in [11]. As stochastic global search algo-
rithms, genetic algorithms lack stability.

Various architectures and research tools have been pro-
posed for cloud-integrated sensor networks including BSNs [8,
1, 7, 3, 16, 6]. Hassan et al. [8], Aberer et al. [1], Gaynor et al. [7]
and Boonma et al. [3] assume three-tier architectures sim-
ilar to BitC and investigate publish/subscribe communica-
tion between the edge layer to the cloud layer. Their fo-
cus is placed on push communication. In contrast, BitC
investigates push-pull hybrid communication between the
sensor layer and the cloud layer through the edge layer.
Yuriyama et al. propose a two-tier architecture that con-
sists of the sensor and cloud layers [16]. The architectures
proposed by Yuriyama et al. and Fortino et al. [6] are sim-
ilar to BitC in that they leverage the notion of virtual sen-
sors. However, they do not consider push-pull (nor pub-
lish/subscribe) communication. All the above-mentioned
work do not consider adaptive/stable configurations of sen-
sor networks as BitC does.

Push-pull hybrid communication has been studied in sen-
sor networks [14, 2, 9, 10]. However, few efforts exist to
study it between the edge and cloud layers in the context
of cloud-integrated sensor networks. Unlike those relevant
work, this paper formulates a sensor network configuration
problem with cloud-specific objectives as well as the ones in
sensor networks and seeks adaptive/stable solutions for the
problem.

9. CONCLUSION
This paper considers a layered push-pull hybrid commu-

nication for cloud-integrated BSNs and formulates a BSN
configuration problem to seek equilibrium solutions. Evo-
lutionary game theoretic algorithms are used to approach
the problem. A theoretical analysis proves that the pro-
posed algorithms allow each BSN to operate at an equilib-
rium by using an evolutionarily stable configuration strategy
in a deterministic (i.e., stable) manner. Simulation results
verify that BitC configures BSNs in an adaptive and stable
manner. BitC outperforms an existing well-known genetic
algorithm in the quality, stability and computational cost in
configuring BSNs.

10. REFERENCES
[1] K. Aberer, M. Hauswirth, and A. Salehi.

Infrastructure for data processing in large-scale
interconnected sensor networks. In Proc. the 8th IEEE
Int’l Conference on Mobile Data Management, 2007.

[2] P. Boonma, Q. Han, and J. Suzuki. Leveraging
biologically-inspired mobile agents supporting
composite needs of reliability and timeliness in sensor
applications. In Proc. IEEE Int’l Conf. on Frontiers in
the Convergence of Biosci. and Info. Tech., 2007.

[3] P. Boonma and J. Suzuki. TinyDDS: An interoperable
and configurable publish/subscribe middleware for
wireless sensor networks. In A. Hinze and
A. Buchmann, editors, Principles and Apps. of Dist.
Event-Based Systems, chapter 9. IGI Global, 2010.

[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Trans Evol. Computat., 6(2), 2002.

[5] J. Durillo, A. Nebro, and E. Alba. The jMetal
framework for multi-objective optimization: Design
and architecture. In Proc. IEEE Congress on Evol.
Computat., 2010.

[6] G. Fortino, D. Parisi, V. Pirrone, and G. D. Fatta.
BodyCloud: A SaaS approach for community body
sensor networks. Future Generation Computer
Systems, 35(6):62–79, 2014.

[7] M. Gaynor, M. Welsh, S. Moulton, A. Rowan,
E. LaCombe, and J. Wynne. Integrating wireless
sensor networks with the grid. IEEE Internet
Computing, July/August 2004.

[8] M. M. Hassan, B. Song, and E.-N. Huh. A framework
of sensor-cloud integration opportunities and
challenges. In Proc. the 3rd ACM Int’l Conference on
Ubiquitous Info. Mgt. and Comm., 2009.

[9] S. Kapadia and B. Krishnamachari. Comparative
analysis of push-pull query strategies for wireless
sensor networks. In Proc. International Conference on
Distributed Computing in Sensor Systems, 2006.

[10] M. Li, D. Ganesan, and P. Shenoy. PRESTO:
Feedback-driven data management in sensor networks.
In Proc. USENIX Symposium on Networked Systems
Design and Implementation, 2006.

[11] D. H. Phan, J. Suzuki, S. Omura, K. Oba, and
A. Vasilakos. Multiobjective communication
optimization for cloud-integrated body sensor
networks. In Proc. IEEE/ACM Int’l Workshop on
Data-intensive Process Management in Large-Scale
Sensor Systems: From Sensor Networks to Sensor
Clouds, In conjunction with IEEE/ACM Int’l
Symposium on Cluster, Cloud and Grid Computing,
May 2014.

[12] N. Srinivas and K. Deb. Multiobjective function
optimization using nondominated sorting genetic
algorithms. Evol. Computat., 2(3), 1995.

[13] P. Taylor and L. Jonker. Evolutionary stable strategies
and game dynamics. Elsevier Mathematical
Biosciences, 40(1), 1978.

[14] H. Wada, P. Boonma, and J. Suzuki. Chronus: A
spatiotemporal macroprogramming language for
autonomic wireless sensor networks. In N. Agoulmine,
editor, Autonomic Network Mgt. Principles: From
Concepts to Applications, chapter 8. Elsevier, 2010.

[15] J. W. Weibull. Evolutionary Game Theory. MIT
Press, 1996.

[16] M. Yuriyama and T. Kushida. Sensor-cloud
infrastructure - physical sensor management with
virtualized sensors on cloud computing. In Proc. the
13th Int’l Conf. on Network-Based Info. Sys., 2010.

[17] E. Zitzler and L. Thiele. Multiobjective optimization
using evolutionary algorithms: A comparative study.
In Proc. Int’l Conf. on Parallel Problem Solving from
Nature, 1998.

