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ABSTRACT

This paper studies a multiobjective evolutionary game the-
oretic framework for application placement in clouds that
support a power capping mechanism (e.g., Intel’s Runtime
Average Power Limit-RAPL) for CPUs. Given the notion
of power capping, power can be treated as a schedulable
resource in addition to traditional resources such as CPU
time share and bandwidth share. The proposed framework,
called Cielo, aids cloud operators to schedule resources (e.g.,
power, CPU and bandwidth) to applications and place appli-
cations onto particular CPU cores in an adaptive and stable
manner according to the operational conditions in a cloud,
such as workload and resource availability. This paper eval-
uates Cielo through a theoretical analysis and simulations.
It is theoretically guaranteed that Cielo allows each appli-
cation to perform an evolutionarily stable deployment strat-
egy, which is an equilibrium solution under given operational
conditions. Simulation results demonstrate that Cielo allows
applications to successfully leverage the notion of power cap-
ping to balance their response time performance, resource
utilization and power consumption.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence|: Problem Solving, Control
Methods, and Search— Heuristic methods; C.2.4 [Computer-
Communication Networks]: Distributed Systems—Dis-
tributed applications
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1. INTRODUCTION

Dynamic Voltage and Frequency Scaling (DVFS) is a ma-
jor method of choice for investigating the tradeoff between
power consumption and performance in cloud applications.
Power capping is an emerging alternative to DVFS [16]. In-
stead of managing the CPU’s frequency directly, the user
simply specifies a time window and a power consumption
bound. The CPU guarantees that its average power con-
sumption will not exceed the specified could over each win-
dow. Both the window size and bound can be modified
at runtime. This mechanism treats power as a schedula-
ble resource and allows cloud operators to control the exact
amount of power that each CPU consumes.

Given the current availability of power capping mecha-
nisms from major CPU manufacturers, such as Intel’s Run-
time Average Power Limit (RAPL), this paper focuses on an
application placement problem for cloud operators to sched-
ule resources (e.g., power, CPU and bandwidth) to appli-
cations and place applications onto particular CPU cores
according to the operational conditions in a cloud, such as
workload and resource availability. This paper investigates
two important properties of application placement in clouds:

o Adaptability: Adjusting the locations of and resource
allocation for applications according to operational con-
ditions so that they can keep expected levels of perfor-
mance (e.g. response time) while maintaining their
resource utilization (e.g. CPU utilization and power
consumption).

e Stability: Minimizing oscillations (non-deterministic in-
consistencies) in making adaptation decisions.

Cielo is an evolutionary game theoretic framework for
adaptive and stable application placement in clouds that
support a power capping mechanism for CPUs. This paper
describes its design and evaluates its adaptability and sta-
bility. In Cielo, each application maintains a set (or a pop-
ulation) of deployment strategies, each of which indicates
the location of and resource allocation for that application.
Cielo theoretically guarantees that, through a series of evo-
lutionary games between deployment strategies, the popula-
tion state (i.e., the distribution of strategies) converges to an
evolutionarily stable equilibrium, which is always converged



to regardless of the initial state. (A dominant strategy in
the evolutionarily stable population state is called an evo-
lutionarily stable strategy.) In this state, no other strate-
gies except an evolutionarily stable strategy can dominate
the population. Given this theoretical property, Cielo aids
each application to operate at equilibria by using an evo-
lutionarily stable strategy for application deployment in a
deterministic (i.e., stable) manner.

Simulation results verify this theoretical analysis; appli-
cations seek equilibria to perform evolutionarily stable de-
ployment strategies and adapt their locations and resource
allocations to given operational conditions. Cielo allows ap-
plications to successfully leverage the notion of power cap-
ping and balance their response time performance, resource
utilization and power consumption. In comparison to exist-
ing heuristics, Cielo outperforms two well-known heuristics
algorithm first-fit and best-fit algorithms (FFA and BFA),
which have been widely used for adaptive cloud application
deployment [1,6,14,15].

2. PROBLEM STATEMENT

This section formulates an application deployment prob-
lem where M hosts are available to operate N applications.

Each application is designed with three-tiered servers (Fig. 1).

Using a certain hypervisor, each server is assumed to run on
a virtual machine (VM) atop a host. A host can run multiple
VMs. They share resources available on their local host.

Each message is sequentially processed from a Web server
to a database server through an application server. A reply
message is generated by the database server and forwarded
in the reverse order (Fig. 1). This paper assumes that differ-
ent applications utilize different sets of servers. (Servers are
not shared by different applications.) And each host runs
multi cores processor to allocate differents applications.

The goal of this problem is to find evolutionarily stable
strategies that deploy N applications (i.e., N x 3 VMs) on
M hosts so that the applications adapt their locations and
resource allocation to given workload and resource availabil-
ity with respect to four objectives described below. (All
objectives are to be minimized.)

CPU allocation: A certain processing core time share (in
percentage) is allocated to each VM. (The processing core
share of 100% means that a core is fully allocated to a VM.)
It represents the upper limit for the VM’s processing core
utilization. This objective is computed as Zle c; where ¢
denotes the processing core time share allocated to the ¢-th
tier server in an application.

Bandwidth allocation: A certain amount of bandwidth (in
bits/second) is allocated to each VM. It is the upper limit for
the VM’s bandwidth consumption. This objective is com-
puted as Zle b; where b; denotes the bandwidth allocated
to the ¢-th tier server in an application.

Response time: This objective is indicated as the time
required for a message to travel from a web server to a
database server: TP 4+ T + T where T? denotes the total
time for an application to process an incoming message from
a user at three servers, T" denotes the waiting time for a
message to be processed at servers, and T denotes the total
communication delay to transmit a message among servers.
TP, TV and T are estimated with the M/M/M queuing
model, in which message arrivals follow a Poisson process
and a server’s message processing time is exponentially dis-
tributed.

T? is computed as follows where T} denotes the time re-
quired for the t-th tier server to process a message.
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O is the total number of processing cores that a host uses
to allocate applications. A is the message arrival rate for
an application (i.e., the number of messages the applica-
tion receives from users in the unit time). A = %Zle At.
(Currently, A = A1 = A2 = A3.) p: is the processing core
utilization of the t-th tier server. fma. and f: are the maxi-
mum CPU frequency and the CPU frequency of a host that
the t-th tier server resides on.

T° is computed as follows where B is the size of a message
(in bits).
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Power Consumption: This objective indicates the average
of power consumption (in W) that one host consumes. And
it is computed as follow where H denotes the total number
of hosts in the data center.
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Pfre and Pl denote the power consumption of a host
h when its processing core o utilization is 0% and 100% at
the frequency of fi, respectively.

Cielo also considers four constraints:

Core capacity constraint: o, < Ly for all M hosts. Ly is
the maximum processing core capacity in one host, o; is the
total processing core share allocated to the i-th host. The
violation of this constraint is computed as:

M

Cu=>_ (Ii-(o; — Lvy)) (5)

i=1

I, =1if o, > Ly. Otherwise, I, = 0.

Bandwidth capacity constraint: b; < Lp for all M hosts.
Lp is the maximum bandwidth capacity in one host, b; is
the total bandwidth allocated to the i-th host. The violation
of bandwidth constraint is computed as:

M

Cp=>_ (I (bi—Lp)) (6)

=1

I;=1if b; > Lp. Otherwise, I; =0.

Response time constraint: r; < Lg for all N applications.
Lpg is the upper limit of response time for applications, r;
is the response time of i-th application. The violation of
response time upper limit constraint is computed as:

N

Cr =3 (- (ri - Lr)) (7)

i=1

I, =1if r; > Lr. Otherwise, I; = 0.



Energy consumption constraint: e; < Lg for all M ap-
plications. Lg is the upper limit of energy consumption
for hosts, e; is the energy consumption of i-th host. The
violation of energy consumption upper limit constraint is
computed as:

N
Cp =3 (i (ei - Lp)) (8)
=1

I; =1if e, > Lg. Otherwise, I; = 0.
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Figure 1: Three Tiers of Web, Application and Database Servers

3. EVOLUTIONARY GAME THEORY

In a conventional game, the objective of a player is to
choose a strategy that maximizes its payoff. In contrast,
evolutionary games are played repeatedly by players ran-
domly drawn from a population. This section overviews key
elements in evolutionary games: evolutionarily stable strate-
gies (ESS) and replicator dynamics.

3.1 Evolutionarily Stable Strategies (ESS)

Suppose all players in the initial population are programmed

to play a certain (incumbent) strategy k. Then, let a small
population share of players, z € (0,1), mutate and play a
different (mutant) strategy ¢. When a player is drawn for a
game, the probabilities that its opponent plays k& and £ are
1—x and x, respectively. Thus, the expected payoffs for the
player to play k and £ are denoted as U(k,z¢+ (1 —x)k) and
U(l,xl + (1 — x)k), respectively.

DEFINITION 1. A strategy k is said to be evolutionarily

stable if, for every strategy £ # k, a certain T € (0,1) exists,
such that the inequality

Uk, 2+ (1 —x)k) > U(¥, zf+ (1 —x)k) (9)
holds for all z € (0,Z).

If the payoff function is linear, Equation 9 derives:

(1 —2)U(k, k) + 2U(k,£) > (1 —2)U(L, k) +zU (£, £)  (10)
If x is close to zero, Equation 10 derives either

Ulk,k) > U(L, k) or Uk, k) = U(£, k) and U(k, £) > U(£,£) (11)
This indicates that a player associated with the strategy
k gains a higher payoff than the ones associated with the
other strategies. Therefore, no players can benefit by chang-
ing their strategies from k to the others. This means that
an ESS is a solution on a Nash equilibrium. An ESS is a

strategy that cannot be invaded by any alternative (mutant)
strategies that have lower population shares.

3.2 Replicator Dynamics

The replicator dynamics describes how population shares
associated with different strategies evolve over time [20]. Let
Ax(t) > 0 be the number of players who play the strategy
k € K, where K is the set of available strategies. The
total population of players is given by A(t) = > ‘k}i‘lAk (t).
Let zx(t) = Ax(t)/A(t) be the population share of players
who play k£ at time t. The population state is defined by
X(t) = [z1(t), - ,xx(t), - ,xx(t)]. Given X, the expected

payoff of playing k is denoted by U(k, X). The population’s
average payoff, which is same as the payoff of a player drawn
randomly from the population, is denoted by U(X,X) =
> ‘k}i‘lxk -U(k, X). In the replicator dynamics, the dynamics
of the population share x is described as follows. &y is the
time derivative of xj.

i =z - [Ulk, X) — U(X, X)) (12)

This equation states that players increase (or decrease)
their population shares when their payoffs are higher (or
lower) than the population’s average payof.

THEOREM 1. If a strategy k is strictly dominated, then
Tk (t)t*}oo — 0.

A strategy is said to be strictly dominant if its payoff is
strictly higher than any opponents. As its population share
grows, it dominates the population over time. Conversely, a
strategy is said to be strictly dominated if its payoff is lower
than that of a strictly dominant strategy. Thus, strictly
dominated strategies disappear in the population over time.

There is a close connection between Nash equilibria and
the steady states in the replicator dynamics, in which the
population shares do not change over time. Since no play-
ers change their strategies on Nash equilibria, every Nash
equilibrium is a steady state in the replicator dynamics. As
described in Section 3.1, an ESS is a solution on a Nash equi-
librium. Thus, an ESS is a solution at a steady state in the
replicator dynamics. In other words, an ESS is the strictly
dominant strategy in the population on a steady state.

Cielo maintains a population of deployment strategies for
each application. In each population, strategies are ran-
domly drawn to play games repeatedly until the population
state reaches a steady state. Then, Cielo identifies a strictly
dominant strategy in the population and deploys VMs based
on the strategy as an ESS.

4. CIELO

Cielo maintains N populations, {Pi,P2,...,Pn}, for N
applications and performs games among strategies in each
population. A strategy s is defined to indicate the locations
of and resource allocation for three VMs in an application:

s(a;) = U (hi,ts City Uit bist,pie), 1<i< N (13)
tel,2,3
Host 1 Host 2
core 1 core 2 core 1 p2 core 2 p5 A=App
W=Web
D = DataBase
— p = p-state
TT D|p core 3
core3 pb cored p1 cored p3 core 4
CPU BW
SLlLLY (%) (bps)

[ Virtual Machines for Application a1: {(1,3,30,80,90),(1,3,30,85,100),(2,3,45,120,83)}
Virtual Machines for Application a2: {(1,4,20,50,82.8),(2,1,25,65,82.9),(2,2,60,140,85)}

Figure 2: Example Deployment Strategies

a; denotes the i-th application. h;; is the ID of a host that
operates a;’s t-th tier VM. ¢; ; is the ID of the core inside the
host h; . u;,c and b; ¢ are the CPU and bandwidth allocation



for a;’s t-th tier VM. p; ¢ denotes the power cap of host h; ¢
core c¢;+ where allocates t-th tier VM. This power cap is
translated later to CPU p-state based on the table 3. Each
core operates at the highest p-state required by its allocated
VMs.

Fig. 2 shows two example strategies for two applications
(a1 and a2) (N = 2 and M = 2). aq’s strategy (s(a1))
places the first-tier VM on host 1 core 3(h1,1 =1, ¢1,1 = 3),
which caps power to 90 Watts p1,1 = 90and consumes 30%
CPU share and 80 Kbps bandwidth for the VM (¢1,1 = 30
and b1,1 = 80). The second-tier VM is placed on host 1
core 3(h1,2 = 1, ¢1,2 = 3), which caps power to 100 Watts
(p1,2 = 100) and consumes 30% CPU share and 85 Kbps
bandwidth for the VM (¢1,2 = 30 and b1,2 = 85). The third-
tier VM is placed on host 2 core 3 (h1s = 2, c1,3 = 3),
which caps power to 83 Watts p1,3 = 83 and consumes 45%
CPU share and 120 Kbps bandwidth for the VM (¢1,3 = 45
and b1,3 = 120). Given s(a1), ai’s objective values for CPU
allocation and bandwidth allocation are 105% (30 + 30 +
45) and 285 kbps (80 + 85 + 120).

Algorithm 1 Evolutionary Process in Cielo

g=20
: Randomly generate the initial N populations for N applica-
tions: P = {P1,P2,...., PN}
: while g < Gz do
for each population P; randomly selected from P do
Pl 0
for j =1 to |P;|/2 do
s1 ¢ randomlySelect(P;)
sg < randomlySelect(P;)
winner < performGame(si, s2)
replica < replicate(winner)
if random() < Py, then
replica < mutate(winner)

= e e e

end if
Pi\ {51, 52}
P! U {winner, replica}
end for
d; + argmazsep, Ts
19: while d; is infeasible do
20: Pi\{di}
21: d; < argmazsep,;Ts
22: end while
23: Deploy VMs for the current application based on d;.
24:  end for

25: g=g+1
26: end while

Algorithm 1 shows how Cielo seeks an evolutionarily sta-

ble strategy for each application through evolutionary games.

In the O-th generation, strategies are randomly generated
for each population (Line 2). In each generation (g), a se-
ries of games are carried out on every population (Lines 4
to 24). A single game randomly chooses a pair of strategies
(s1 and s2) and distinguishes them to the winner and the
loser with respect to the objectives described in Section 2
(Lines 7 to 9). The loser disappears in the population. The
winner is replicated to increase its population share and mu-
tated with a certain rate P, (Lines 10 to 15). Mutation
randomly chooses one of three VMs in the winner and alters
its hi,, cie and b;; values at random (Line 12).

Once all strategies play games in the population, Cielo
identifies a feasible strategy whose population share (z;) is
the highest and determines it as a dominant strategy (d;)

(Lines 18 to 22). A strategy is said to be feasible if it never
violate the CPU and bandwidth capacity constraints (¢’ = 0
in Eq. 5 and b = 0 in Eq. 8). It is said to be infeasible if
¢’ > 0orb” > 0. Cielo deploys three VMs for an application
in question based on the dominant strategy.

A game is carried out based on the superior-inferior re-
lationship between given two strategies and their feasibility
(performGame () in Algorithm 1). If a feasible strategy and
an infeasible strategy participate in a game, the feasible one
always wins over its opponent. If both strategies are feasible,
they are compared with one of the following three schemes
to select the winner.

e Pareto dominance (PD): This scheme is based on the
notion of dominance [17], in which a strategy s; is said
to dominate another strategy s2 (denoted by s1 > s2)
if both of the following conditions hold:

— s1’s objective values are superior than, or equal
to, s2’s in all objectives.

— s1’s objective values are superior than s2’s in at
least one objectives.

The dominating strategy wins a game over the dom-
inated one. If two strategies are non-dominated with
each other, the winner is randomly selected.

e Hypervolume (HV): This scheme is based on the hy-
pervolume metric [25]. It measures the volume that a
given strategy (s) dominates in the objective space:

HV(s) = A (U{x/|s - - xr}) (14)

A denotes the Lebesgue measure. x, is the reference
point placed in the objective space. A higher hypervol-
ume means that a strategy is more optimal. Given two
strategies, the one with a higher hypervolume value
wins a game. If both have the same hypervolume value,
the winner is randomly selected.

e Hybrid of Pareto comparison and hypervolume (PD-
HV): This scheme is a combination of the above two
schemes. First, it performs the Pareto dominance (PD)
comparison for given two strategies. If they are non-
dominated, the hypervolume (HV) comparison is used
to select the winner. If they still tie with the hyper-
volume metric, the winner is randomly selected.

If both strategies are infeasible in a game, they are com-
pared based on their constraint violation. A strategy s1 wins
a game over another strategy sz if both of the following con-
ditions hold:

e s1’s constraint violation is lower than, or equal to, s2’s
in all constraints.

e s1’s constraint violation is lower than s2’s in at least
one constraints.

5. STABILITY ANALYSIS

This section analyzes Cielo’s stability (i.e., reachability
to at least one of Nash equilibria) by proving the state of
each population converges to an evolutionarily stable equi-
llibrium. The proof consists of three steps: (1) designing



differential equations that describe the dynamics of the pop-
ulation state, (2) proving an strategy selection process has
equilibria, and (3) proving the the equilibria are asymptoti-
cally (or evolutionarily) stable. The proof uses the following
terms and variables.

e S denotes the set of available strategies. S* denotes a
set of strategies that appear in the population.

o X(t) = {x1(t),z2(t), -~ ,x9+(t)} denotes a popula-
tion state at time ¢ where x4 (¢) is the population share
of a strategy s € S. Y ses+(zs) = 1.

e [ is the fitness of a strategy s. It is a relative value
determined in a game against an opponent based on
the dominance relationship between them. The winner
of a game earns a higher fitness than the loser.

e p; = z1 - ¢(Fs — Fy) denotes the probability that a
strategy s is replicated by winning a game against an-
other strategy k. ¢(Fs — Fy) is the probability that
the fitness of s is higher than that of k.

The dynamics of the population share of s is described as:
i o= > {zeph —zepl}

kES* ks

a3

zp{p(Fs — Fr) — ¢(Fr, — Fs)}  (15)
keS* k#s
Note that if s is strictly dominated, s (¢)t—c — 0.

THEOREM 2. The state of a population converges to an
equilibrium.

ProOF. It is true that different strategies have different
fitness values. In other words, only one strategy has the
highest fitness among others. Given Theorem 1, assuming
that Fi > F» > --- > Fjg«|, the population state converges
to an equilibrium: X (¢)i—e0 = {x1(t), z2(t),- - -
={1,0,---,0}. O

THEOREM 3. The equilibrium found in Theorem 2 is asymp-

totically stable.

PROOF. At the equilibrium X = {1,0,---,0}, a set of
differential equations can be downsized by substituting 1 =
1—xo—+ — x5+

[s*|
Zo=zslesi(l—2)+ D zi-csil, s,k=2,.,|S" (16)
i=2,is

where cs,, = ¢(Fs—Fj)—d(Fr—Fs)) and Z(t) = {22(¢), 23(1),

-, 25+|(t)} denotes the corresponding downsized popula-
tion state. Given Theorem 1, Z; oo = Zeq = {0,0,---,0}
of (]S*| — 1)-dimension.

If all Eigenvalues of Jaccobian matrix of Z(¢) has nega-
tive real parts, Z., is asymptotically stable. The Jaccobian

matrix J’s elements are
Zs
Jsk = 3
Phd|z=24

o+
O0zs [Csl(1 - Zs) + 27‘;:2‘2-#5 Zi " Csi}
- : (17)
0z
|Z=2Zcq
for s,k =2,...,|S"|
Therefore, J is given as follows, where ca1,c31,--+,¢js+1
.
are J’s Eigenvalu s.c21 0 ... 0
0 c¢31 - 0
J= . . . ) (18)
0 0 - s

cs1 = —¢(F1—Fs) < 0 for all s; therefore, Z.q = {0,0,---,0}
is asymptotically stable. [

7x\S*\(t)}t—>oo

6. SIMULATION EVALUATION

This section evaluates Cielo through simulations. This
paper uses a simulated cloud data center that consists of
100 hosts in a 10 x 10 grid topology (M = 100). The grid
topology is chosen based on recent findings on efficient topol-
ogy configurations in clouds [8,9]. This paper also assumes
five types of applications. Table 1 shows the message ar-
rival rate (the number of incoming messages per second) and
message processing time (second) for each of the five appli-
cation types. This configuration follows Zipf’s law. This
paper simulates 40 application instances for each type (200
application instances in total; N = 200).

Table 1: Message Arrival Rate and Message Processing Time

[ Application type 1T 17T 217 37174715

[ Message arrival rate (A\) [ 110 | 70 | 40 [ 20 [ 10 |
Web server (17) 0.02 | 0.02 | 0.04 | 0.04 | 0.08
App server (1) 0.03 | 0.08 | 0.04 | 0.13 | 0.11
DB server (T%) 0.05 | 0.05 [ 0.12 | 0.08 | 0.11

This paper assumes each host is equipped with an Intel
Core2 Quad Q6700 CPU, which has five frequency and volt-
age operating points (P-states). Table 3 shows the power
consumption at each P-state under the 0% and 100% CPU
utilization [7]. This setting is used in Eq. 4 to compute
power consumption objective values.

In Cielo, the number of strategies is 100 in each popula-
tion. Polynomial mutation (P, in Algorithm 1) with dis-
tribution index 45. The maximum number of generations
(Gmaz in Algorithm 1) is set to 500. Every simulation re-
sult is the average with 20 independent simulation runs.

Table 2: Simulation Settings

[ Parameter [ Value |
Number of hosts (M) 100
Number of applicationis (V) 200
Number of simulation runs 20
Number of generations (Gmaaz) 500
Population size (]P;]) 100
Energy consumption for
a single bit of data (e¢) 0.001 Watt
Upper limit of processing
capacity per core(Lg) 100%
Upper limit of bandwidth
capacity per host(Lg) 1Kbps
Upper limit of energy
consumption per host(Lg) 400Watts
Upper limit of response
time per application(Lg) 40ms

Table 3: P-states in Intel Core2 Quad Q6700

p-state ” CPU frequency (f) | Pifd,P | Pﬂ,‘mw |
pl 1.6 GHz 82.7TW | 8.77T W
P2 1.867 GHz 82.85 W 92 W
p3 2.113 GHz 82.91 W 95.5 W
p4 2.4 GHz 83.1 W | 99.45 W
p5 2.67 GHz 83.25 W 103 W

Figs. 3 to 5 illustrate how Cielo three variants evolve de-
ployment strategies through generations and improve their
objective values.

Figs. 3a, 4a and 5a show that CPU allocation decreases
through generations. Cielo HV reaches 8.04% of average in



the last generation, which is the best performance among all
three Cielo variants.

Figs. 3b, 4b and 5b show that BW allocation improves
over generations. Cielo HV reaches 200.95 bps of average in
the last generation, which is the best performance among all
three Cielo variants.

Figs. 3c, 4c and 5c show that Cielo successfully saves
energy consumption through generations. Cielo HV reaches
334.89 Watts of average in the last generation, which is the
best performance among all three Cielo variants.

In Figs. 3d, 4d and b5d response time maintains almost
stable through generations, because response time conflicts
with all other objectives and Cielo trends to balance the
trade-off among all the objectives. Cielo HV also reaches
the best performance among all three Cielo variants with
26.11 ms of average in the last generation.

Table 5 compares Cielo three variants with two well-known

heuristics algorithms, FFA (first-fit algorithm) and BFA (best-

fit algorithm), which have been widely used for VM place-
ment in clouds [1,6,14,15]. The table shows the minimum,
average and maximum objective values in the last gener-
ation. In all objectives, Cielo HV outperforms Cielo PD
and Cielo HV-PD. The largest difference is in the minimum
bandwidth allocation with DVFS disabled (40%), and the
smallest difference is in the maximum response time with
DVFS enabled (16.60%). FFA yields the lowest power con-
sumption because it is designed to deploy VMs on the mini-
mum number of hosts, however it sacrifices the other objec-
tives. Theoretically BFA should performs the best in CPU
allocation because it is designed to deploy VMs on the hosts
that maintain higher resource availability. However Cielo
HV is able to find the dominant strategy which distributes
CPU allocation among hosts even better than BFA. Cielo
maintains balanced objective values in between FFA and
BFA while Cielo yields the best performance in response
time, CPU allocation and bandwidth allocation.

Table 4 shows the time required for Cielo three variants
to execute given numbers of generations. Simulations were
carried out with a Java VM 1.7 on a Windows 8.1 PC with
a 3.6 GHz AMD A6-5400K APU and 6 GB memory space.
For running a single simulation (i.e., 500 generations), Cielo
HV runs 6 min 15 sec which is the fastest among all Cielo
variant.

Fig. 6 illustrates how Cielo three variants evolve their
hypervolume value through generations. Hypervolume value
is the average computed using each application’s dominant
strategy in each generation. The results confirms again Cielo
HV outperforms its hypervolume performance among other
Cielo variants.

From simulation results, Cielo HV outperforms over other
two Cielo variants in all objectives performance value and
execution time. Cielo PD and Cielo HV-PD use the notion
of pareto dominance, which requires to make multi compar-
ison among all objectives. Cielo HV instead uses just one
comparison to decide the winner. Pareto dominance asks for
the strictly dominant strategy, one strategy should outper-
forms in all objectives and survives through generations in
order to become the dominant strategy. However in most of
the cases strategies are tie using pareto dominance because
objectives are conflicting with each other.

7. RELATED WORK

Numerous research efforts have been made to study heuris-
tic algorithms for application placement problems in clouds

Table 4: Cielo Execution Time Comparison

Algorithms Execution Time
Cielo-PD 6 min 48 sec
Cielo-HV 6 min 15 sec

Cielo-PD-HV 7 min 12 sec

Table 5: Performance of Cielo, FFA and BFA

Objectives Min Avg Max
Cielo HV 7.97 8.04 8.12
CPU Cielo PD 19.38 19.69 19.93
allocation Cielo PD-HV 19.46 19.51 19.58
(%/host) FFA 96.1 96.1 96.1
BFA 10.54 10.54 10.54
Cielo HV 199.86 | 200.95 | 202.44
Bandwidth Cielo PD 224.54 | 228.39 | 232.32
allocation Cielo PD-HV || 223.62 | 225.3 | 227.88
(bps/host) FFA 445 446 446.92
BFA 425 425 425
Cielo HV 334.76 | 334.89 335
Power Cielo PD 338.99 | 339.22 | 339.44
consumption | Cielo PD-HV || 339.08 | 339.19 | 339.34
(W) FFA 43.82 43.83 43.85
BFA 338.66 | 338.73 | 338.8
Cielo HV 25.35 26.11 26.94
Response Cielo PD 35.84 36 36.59
time Cielo PD-HV 30.64 30.93 31.33
(msec) FFA 173.45 | 173.45 | 173.45
BFA 152.92 | 152.92 | 152.92

(e.g., [1,3,6,12,14,15,21,23]). Most of them assume single-
tier application architecture and considers a single objective.
For example, in [3,12,21,23], only energy saving is considered
as the objective. In contrast, Cielo assumes a multi-tier ap-
plication architecture and considers multiple objectives. It
is intended to reveal the trade-off relationships among con-
flicting objectives.

Game theoretic algorithms have been used for a few as-
pects of cloud computing; e.g., application placement [4,11,
24], task allocation [18] and data replication [10]. In [4,11,
24], greedy algorithms seek equilibria in application place-
ment problems. This means they do not attain the stability
to reach equilibria as Cielo does.

Several genetic algorithms (e.g., [19,22]) and other stochas-
tic optimization algorithms (e.g., [2,5]) have been studied to
solve application placement problems in clouds. They seek
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the optimal placement solutions; however, they do not con-
sider stability. In contrast, Cielo aids applications to seek
evolutionarily stable solutions and stay at equilibria.

8. CONCLUSIONS

This paper describes and evaluates Cielo, a multiobjec-
tive evolutionary game theoretic framework for adaptive and
stable application placement in clouds that support a power
capping mechanism for CPUs. It aids cloud operators to
schedule resources to applications and place applications
onto particular CPU cores according to the operational con-
ditions in a cloud. It is theoretically guaranteed that Cielo
allows each application to perform an evolutionarily stable
deployment strategy, which is an equilibrium solution un-
der given operational conditions. Simulation results verify
that Cielo performs application deployment in an adaptive
and stable manner. Cielo outperforms existing well-known
heuristics: FFA an BFA.
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