Adaptive and Stable Integration of Energy Harvesting Aware Body Sensor Networks with Clouds

Yi Cheng-Ren¹, Junichi Suzuki¹, Dung H. Phan¹, Shingo Omura³ and Ryuichi Hosoya³

¹University of Massachusetts, Boston
Boston, MA 02125-3393, USA
Email: {yiren001,jxs,phdung}@cs.umb.edu
³OGIS International, Inc.
San Mateo, CA 94402, USA
Email: {omura,hosoya}@ogis-international.com

This paper considers a multi-tier architecture for cloud-integrated body sensor networks (BSNs), called Body-in-the-Cloud (BitC), which is intended to support home healthcare with on-body energy harvesting devices (e.g., piezoelectric and thermoelectric generators) as well as on-body physiological and activity monitoring sensors. This paper formulates a configuration problem in BitC and approaches the problem with an evolutionary game theoretic algorithm to configure BSNs in an adaptive and stable manner. BitC allows BSNs to adapt their configurations (i.e., sensing intervals and sampling rates as well as data transmission intervals) to operational conditions (e.g., data request patterns) with respect to multiple conflicting performance objectives such as resource consumption and data yield. In BitC, evolutionary multiobjective games are performed on configuration strategies (i.e., solution candidates) with an aid of local search mechanisms. BitC theoretically guarantees that each BSN performs an evolutionarily stable configuration strategy, which is an equilibrium solution under given operational conditions. Simulation results verify this theoretical analysis; BSNs seek equilibria to perform adaptive and evolutionarily stable configuration strategies. This paper evaluates five algorithmic variants of BitC under various settings and demonstrates that BitC allows BSNs to successfully leverage harvested energy to balance their performance in different objectives such as resource consumption and data yield.

Index Terms—Body sensor networks, Cloud computing, Multiobjective optimization, Evolutionary game theory

I. INTRODUCTION

Body sensor networks (BSNs) are expected to aid pervasive healthcare with on-body sensors by remotely and continuously performing physiological and activity monitoring for patients [1], [2]. This paper envisions an architecture for cloud-integrated BSNs, called Body-in-the-Cloud (BitC), which virtualizes per-patient BSNs onto clouds by taking advantage of cloud computing features such as pay-per-use billing, scalability in data storage and processing, availability through multi-regional application deployment and accessibility through universal communication protocols (e.g., HTTP and REST). BitC assumes energy harvesting aware BSNs, each of which operates on-body energy harvesting devices (e.g., piezoelectric and thermoelectric generators) as well as on-body sensors for, for example, heart rate, oxygen saturation, body temperature and fall detection.

BitC consists of the sensor, edge and cloud layers (Fig. 1). The sensor layer is a collection of sensor nodes in BSNs. Each BSN operates one or more sensor nodes, each of which is equipped with a sensor(s) and an energy harvester(s). Sensor nodes are wirelessly connected to a dedicated per-patient device or a patient’s computer (e.g., smartphone or tablet machine) that serves as a sink node. The edge layer consists of sink nodes, which collect sensor data from sensor nodes in BSNs. The cloud layer consists of cloud environments that host virtual sensors, which are virtualized counterparts (or software counterparts) of physical sensors in BSNs. Virtual sensors collect sensor data from sink nodes in the edge layer and store those data for future use. The cloud layer also hosts various applications that obtain sensor data from virtual sensors and aid medical staff (e.g., clinicians, hospital/visiting nurses and caregivers) to monitor patients and share sensor data for clinical observation and intervention.

BitC performs push-pull hybrid communication between its three layers. Each sensor node periodically collects data from a sensor(s) attached to it based on sensor-specific sensing intervals and sampling rates and transmits (or pushes) those collected data to a sink node. The sink node in turn forwards (or pushes) incoming sensor data periodically to virtual sensors in clouds. When a virtual sensor does not have sensor data that a cloud application requires, it obtains (or pulls) that data from a sink node or a sensor node. This push-pull communication is intended to make as much sensor data as possible available for cloud applications by taking advantage of push communication while allowing virtual sensors to pull any missing or extra data anytime in an on-demand manner. For example, when an anomaly is found in pushed sensor data, medical staff may pull extra data in a higher temporal resolution to better understand a patient’s medical condition. Given a sufficient amount of data, they may perform clinical intervention, order clinical cares, dispatch ambulances or notify family members of patients.

This paper focuses on configuring BSNs in BitC by adjusting four types of parameters (i.e., sensing intervals and sampling rates for sensors as well as data transmission intervals for sensor and sink nodes) and studies two properties in configuring BSNs:

- Adaptability: Adjusting BSN configurations according to
operational conditions (e.g., data request patterns placed by cloud applications and availability of resources such as bandwidth and memory) with respect to performance objectives such as bandwidth consumption, energy consumption and data yield.

- **Stability:** Minimizing oscillations (non-deterministic inconsistencies) in making adaptation decisions. This paper considers stability as the reachability to at least one of equilibrium solutions in decision making. A lack of stability results in making inconsistent adaptation decisions in different attempts/trials with the same problem settings.

BitC leverages an evolutionary game theoretic algorithm to configure BSNs in an adaptive and stable manner. This paper describes the design of BitC and evaluates its adaptability and stability. In BitC, each BSN maintains a set (or a population) of configuration strategies (solution candidates), each of which specifies a set of configuration parameters for that BSN. BitC theoretically guarantees that, through a series of evolutionary games between BSN configuration strategies, the population state (i.e., the distribution of strategies) converges to an evolutionarily stable equilibrium, which is always converged to regardless of the initial state. (A dominant strategy in the evolutionarily stable population state is called an evolutionarily stable strategy (ESS).) In this state, no other strategies except an ESS can dominate the population. Given this theoretical property, BitC allows each BSN to operate at equilibrium by using an ESS in a deterministic (i.e., stable) manner.

Simulation results verify this theoretical analysis; BSNs seek equilibria to perform adaptive and evolutionarily stable configuration strategies and adapt their configuration parameters to given operational conditions subject to given constraints. This paper evaluates five algorithmic variants of BitC under various settings and demonstrates that BitC allows BSNs to successfully leverage harvested energy to balance their performance with respect to multiple objectives such as resource consumption and data yield. BitC’s performance is evaluated in comparison to a well-known multiobjective evolutionary optimization algorithm, NSGA-II [3], while maintaining 37% higher stability (lower oscillations) in performance across different simulation runs.

II. AN ARCHITECTURAL OVERVIEW OF BITC

BitC consists of the following three layers (Fig. 1).

Sensor Layer: operates one or more BSNs on a per-patient basis (Fig. 1). Each BSN contains one or more sensor node in a certain topology (e.g., tree, star or mesh topology). This paper assumes the star topology. Each sensor node is equipped with a sensor(s) and an energy harvester(s). It is assumed to be battery-operated. It supplies a limited amount of energy to a sensor(s) attached to it and receives power supply from an attached energy harvester(s) as it/they harvest energy. It maintains a sensing interval and a sampling rate for each attached sensor. Upon a sensor reading, it stores collected data in its own memory space. Given a data transmission interval, it periodically flushes all data stored in its memory space and transmits the data to a sink node.

Edge Layer: consists of sink nodes, each of which participates in a certain BSN and receives sensor data periodically from sensor nodes in the BSN. A sink node stores incoming sensor data in its memory space and periodically flushes stored data to transmit (or push) them to the cloud layer. It maintains the mappings between physical and virtual sensors. In other words, it knows the origins and destinations of sensor data. Different sink nodes have different data transmission intervals. A sink node’s data transmission interval can be different from the ones of sensor nodes in the same BSN. Sink nodes are assumed to have limited energy supplies through batteries.

In addition to pushing sensor data to a virtual sensor, each sink node receives a pull request from a virtual sensor when the virtual sensor does not have sensor data that a cloud application(s) requires. If the sink node has the requested data in its memory, it returns that data. Otherwise, it issues another pull request to a sensor node that is responsible for the requested data. Upon receiving a pull request, the sensor node returns the requested data if it has the data in its memory. Otherwise, it returns an error message to a cloud application.

Cloud Layer: operates on clouds to host applications that allow medical staff to place sensor data requests on virtual sensors in order to monitor patients. If a virtual sensor has data that an application requests, it returns that data.
Otherwise, it issues a pull request to a sink node. While push communication carries out a one-way upstream travel of sensor data, pull communication incurs a round trip for requesting data and receiving that data (or an error message).

Virtual sensors are java nodes running in the server on the cloud layer. These virtual sensor nodes are predefined by medical doctors. Each sensor is associated with a four digit identification number, the first two digit indicate the index of the BSN and the last two digit indicate the index of the sensor. Once data are pushed to the cloud layer, corresponding virtual sensor nodes are predefined by medical doctors. Each sensor is associated with a four digit identification number. Virtual sensors call storeToDB java method which issues a sql query that store the received data to the corresponding table in the database. Every time a request come in virtual sensors first check whether the data is available by calling isAvailable java method. If the data is available then it retrieves the data by calling getFromDB java method that issues a sql query to the corresponding table in the database, if not virtual sensors issues a pull request to Edge layer by calling pullData java method. Once virtual sensors get the desired data, it backs to user.

III. BSN Configuration Problem in BitC

This section describes a BSN configuration problem for which BitC seeks equilibrium solutions. Each BSN configuration consists of four types of parameters (i.e., decision variables): sensing intervals and sampling rates for sensor nodes as well as data transmission intervals for sensor and sink nodes. The problem is stated with the following symbols.

- \(B = \{ b_1, b_2, \ldots, b_i, \ldots, b_N \} \) denotes the set of \(N \) BSNs, each of which operates for a patient.
- Each BSN \(b_i \) consists of a sink node (denoted by \(m_i \)) and \(M \) sensors: \(b_i = \{ s_1, s_2, \ldots, s_{ij}, \ldots, s_{IM} \} \). \(o_{ij} \) is the data transmission interval for \(s_{ij} \) to transmit sensor collected data. \(p_{ij} \) and \(q_{ij} \) are the sensing interval and sampling rate for \(s_{ij} \). Sampling rate is defined as the number of sensor data samples collected in a unit time. Each sensor stores collected sensor data in its memory space until its next push transmission. If the memory becomes full, it performs FIFO (First-In-First-Out) data replacement. In a push transmission, it flushes and sends out all data stored in its memory.
- \(o_{mi} \) denotes the data transmission interval for \(m_i \) to forward (or push) sensor data incoming from sensor nodes in \(b_i \) in between push transmissions, \(m_i \) stores sensor data from \(b_i \) in its memory. It performs FIFO data replacement if the memory becomes full. In a push transmission, it flushes and sends out all data stored in its memory.
- \(R_{ij} \) denotes the set of sensor data requests that cloud applications issue to the virtual counterpart of \(s_{ij} \) \((s'_{ij})\) during the time period of \(W \) in the past. Each request \(r_{ijr} \) is characterized by its time stamp \((t_{ijr})\) and time window \((w_{ijr})\). It retrieves all sensor data available in the time interval \([t_{ijr} - w_{ijr}, t_{ijr}]\). If \(s'_{ij} \) has at least one data in the interval, it returns those data; otherwise, it issues a pull request to \(m_i \).

- \(R_{ij} \) denotes the set of sensor data requests for which a virtual sensor \(s'_{ij} \) has no data. \(|R_{ij}^m| \) indicates the number of pull requests that \(s'_{ij} \) issues to \(m_i \). In other words, \(R_{ij} \setminus R_{ij}^m \) is the set of sensor data requests that \(s'_{ij} \) fulfills regarding \(s_{ij} \).
- \(R_{ij} \) denotes the set of sensor data requests for which \(m_i \) has no data. \(|R_{ij}^s| \) indicates the number of pull requests that \(m_i \) issues to \(h_{ij} \) for collecting data from \(s_{ij} \). \(R_{ij}^m \setminus R_{ij}^s \) is the set of sensor data requests that \(m_i \) fulfills regarding \(s_{ij} \).

This paper considers four performance objectives: bandwidth consumption between the edge and cloud layers (\(f_B \)), energy consumption of sensor and sink nodes (\(f_E \)), request fulfillment for cloud applications (\(f_F \)) and data yield for cloud applications (\(f_D \)). The first two objectives are to be minimized while the others are to be maximized.

The bandwidth consumption objective (\(f_B \)) is defined as the total amount of data transmitted per a unit time between the edge and cloud layers. This objective impacts the payment for bandwidth consumption based on a cloud operator’s pay-per-use billing scheme. It also impacts the lifetime of sink nodes. \(f_B \) is computed as follows.

\[
 f_B = \frac{1}{W} \sum_{i=1}^{N} \sum_{j=1}^{M} (c_{ij}d_{ij}) + \frac{1}{W} \sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{r=1}^{R_{ij}} (\phi_{ijr}d_{ij} + d_r) + \frac{1}{W} \sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{r=1}^{R_{ij}} e_r(|R_{ij}^m| - \eta_{ijr})
\]

The first and second terms indicate the bandwidth consumption by one-way push communication from the edge layer to the cloud layer and two-way pull communication between the cloud and edge layers, respectively. \(c_{ij} \) denotes the number of sensor data that \(s_{ij} \) generates and sink nodes in turn push to the cloud layer during \(W \). \(d_{ij} \) is the size of each sensor data (in bits) that \(s_{ij} \) generates. It is currently computed as: \(q_{ij} \times 16 \) bits/sample. \(\phi_{ijr} \) denotes the number of sensor data that a pull request \(r \in R_{ij}^m \) can collect from sink nodes \((|R_{ij}^m|) \). \(d_r \) is the size of a pull request transmitted from the cloud layer to the edge layer. The third term in Eq. 1 indicates the bandwidth consumption by the error messages that sensors generate because they fail to fulfill pull requests. \(\eta_{ijr} \) is the number of sensor data that a pull request \(r \in R_{ij}^s \) can collect from sensor nodes. \(e_r \) is the size of an error message.

The energy consumption objective (\(f_E \)) is defined as the total amount of energy that sensor and sink nodes consume for data transmissions during \(W \). It impacts the lifetime of sensor and sink nodes. It is computed as follows.
\[f_E = \sum_{i=1}^{N} \sum_{j=1}^{M} \frac{W}{\eta_{ij}} e_t d_{ij} + \sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{r=1}^{R_i} e_t \eta_{ijr}(d_{ij} + d_r) + \sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{r=1}^{L} e_t \phi_{ijr}(d_{ij} + d_r) + \sum_{i=1}^{N} \sum_{j=1}^{M} e_t (|R_i|^2 - \eta_{ijr}) \]

The first and second terms indicate the energy consumption by one-way push communication from the sensor layer to the edge layer and two-way pull communication between the edge layer and the sensor layer, respectively. \(e_t \) denotes the amount of energy (in Watts) that a sensor or sink node consumes to transmit a single bit of data. \(d_r \) denotes the size of a pull request from the edge layer to the sensor layer. The third and fourth terms indicate the energy consumption by push and pull communication between the edge and cloud layer, respectively. The fifth term indicates the energy consumption for transmitting error messages on sensor and sink nodes.

The request fulfillment objective \((f_R) \) is the ratio of the number of fulfilled requests over the total number of requests:

\[f_R = \frac{\sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{r=1}^{R_i} |R_i| I_{R_{ij}}}{|R_i|} \times 100 \]

The data yield objective \((f_Y) \) is defined as the total amount of data that cloud applications gather for their users. This objective impacts the informedness and situation awareness for application users. It is computed as follows:

\[f_Y = \sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{r=1}^{R_i} \phi_{ijr} + \sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{r=1}^{L} \eta_{ijr} + c_{ij} \]

BitC considers four constraints. The first constraint \((C_E) \) is the upper limit for energy consumption: \(f_E < C_E \). A violation for the constraint \((g_E) \) is computed as \(g_E = I_E \times (f_E - C_E) \) where \(I_E = 1 \) if \(f_E > C_E \); otherwise \(I_E = 0 \).

The second constraint \((C_Y) \) is the lower limit for data yield: \(f_Y < C_Y \). A constraint violation \((g_Y) \) is computed as \(g_Y = I_Y \times (C_Y - f_Y) \) where \(I_Y = 1 \) if \(f_Y > C_Y \); otherwise \(I_Y = 0 \).

The third constraint \((C_R) \) is the lower limit for request fulfillment: \(f_R > C_R \). The constraint violation in request fulfillment \((g_R) \) is computed as \(g_R = I_R \times (C_R - f_R) \) where \(I_R = 1 \) if \(f_R < C_R \); otherwise \(I_R = 0 \).

The fourth constraint \((C_B) \) is the upper limit for bandwidth consumption: \(f_B < C_B \). A violation for this constraint \((g_B) \) is computed as \(g_B = I_B \times (f_B - C_B) \) where \(I_B = 1 \) if \(f_B > C_B \); otherwise \(I_B = 0 \).

IV. BACKGROUND: EVOLUTIONARY GAME THEORY

In a conventional game, the objective of a player is to choose a strategy that maximizes its payoff in a single game. In contrast, evolutionary games are played repeatedly by players randomly drawn from a population [4]. This section overviews key elements in evolutionary games: evolutionarily stable strategies (ESS) and replicator dynamics.

A. Evolutionarily Stable Strategies (ESS)

Suppose all players in the initial population are programmed to play a certain (incumbent) strategy \(k \). Then, let a small population share of players, \(x \in (0,1) \), mutate and play a different (mutant) strategy \(\ell \). When a player is drawn for a game, the probabilities that its opponent plays \(k \) and \(\ell \) are \(1-x \) and \(x \), respectively. Thus, the expected payoffs for the player to play \(k \) and \(\ell \) are denoted as \(U(k, x\ell + (1-x)k) \) and \(U(\ell, x\ell + (1-x)k) \), respectively.

Definition 1. A strategy \(k \) is said to be evolutionarily stable if, for every strategy \(\ell \neq k \), a certain \(\bar{x} \in (0,1) \) exists, such that the inequality

\[U(k, x\ell + (1-x)k) > U(\ell, x\ell + (1-x)k) \]

holds for all \(x \in (0, \bar{x}) \).

If the payoff function is linear, Equation 5 derives:

\[(1-x)U(k, k) + xU(k, \ell) > (1-x)U(\ell, k) + xU(\ell, \ell) \]

If \(x \) is close to zero, Equation 6 derives either

\[U(k, k) > U(\ell, k), \text{ or} \]

\[U(k, k) = U(\ell, k) \text{ and } U(k, \ell) > U(\ell, \ell) \]

This indicates that a player associated with the strategy \(k \) gains a higher payoff than the ones associated with the other strategies. Therefore, no players can benefit by changing their strategies from \(k \) to the others. This means that an ESS is a solution on a Nash equilibrium. An ESS is a strategy that cannot be invaded by any alternative (mutant) strategies that have lower population shares.

B. Replicator Dynamics

The replicator dynamics describes how population shares associated with different strategies evolve over time [5]. Let \(\lambda_k(t) \geq 0 \) be the number of players who play the strategy \(k \in K \), where \(K \) is the set of available strategies. The total population of players is given by \(\lambda(t) = \sum_{k=1}^{K} \lambda_k(t) \).

Let \(x_k(t) = \lambda_k(t)/\lambda(t) \) be the population share of players who play \(k \) at time \(t \). The population state is defined by \(X(t) = [x_1(t), \ldots, x_k(t), \ldots, x_K(t)] \). Given \(X \), the expected payoff of playing \(k \) is denoted by \(U(k, X) \). The population’s average payoff, which is same as the payoff of a player drawn randomly from the population, is denoted by \(U(X, X) = \sum_{k=1}^{K} x_k \cdot U(k, X) \). In the replicator dynamics, the dynamics of the population share \(x_k \) is described as follows. \(\dot{x}_k \) is the time derivative of \(x_k \).

\[\dot{x}_k = x_k \cdot [U(k, X) - U(X, X)] \]
This equation states that players increase (or decrease) their population shares when their payoffs are higher (or lower) than the population’s average payoff.

Theorem 1. If a strategy \(k \) is strictly dominated, then \(x_k(t)_{t \to \infty} \to 0 \).

A strategy is said to be strictly dominant if its payoff is strictly higher than any opponents. As its population share grows, it dominates the population over time. Conversely, a strategy is said to be strictly dominated if its payoff is lower than that of a strictly dominant strategy. Thus, strictly dominated strategies disappear in the population over time.

There is a close connection between Nash equilibria and the steady states in the replicator dynamics, in which the population shares do not change over time. Since no players change their strategies on Nash equilibria, every Nash equilibrium is a steady state in the replicator dynamics. As described in Section IV-A, an ESS is a solution on a Nash equilibrium. Thus, an ESS is a solution at a steady state in the replicator dynamics, in which the population shares do not change over time. Since no players change their strategies on Nash equilibria, every Nash equilibrium is a steady state in the replicator dynamics. As described in Section IV-A, an ESS is a solution on a Nash equilibrium. Thus, an ESS is a solution at a steady state in the replicator dynamics. In other words, an ESS is the strictly dominant strategy in the population on a steady state.

BitC maintains a population of configuration strategies for each BSN. In each population, strategies are randomly drawn to play games repeatedly until the population state reaches a steady state. Then, BitC identifies a strictly dominant strategy in the population and configures a BSN based on the strategy as an ESS.

V. BODY-IN-THE-CLOUD

BitC maintains \(N \) populations, \(\{ P_1, P_2, ..., P_N \} \), for \(N \) BSNs and performs games among strategies in each population. Each strategy \(s(b_i) \) specifies a particular configuration for a BSN \(b_i \) using four types of parameters: sensing intervals and sampling rates for sensors (\(p_{ij} \) and \(q_{ij} \)) as well as data transmission intervals for sink and sensor nodes (\(o_{mi} \) and \(o_{ij} \)).

\[
s(b_i) = \bigcup_{j \in 1..M} (o_{mi}, o_{ij}, p_{ij}, q_{ij}) \quad 1 < i < N \tag{9}
\]

Algorithm 1 shows how BitC seeks an evolutionarily stable configuration strategy for each BSN through evolutionary games. In the 0-th generation, strategies are randomly generated for each of \(N \) populations \(\{ P_1, P_2, ..., P_N \} \) (Line 2). Those strategies may or may not be feasible. Note that a strategy is said to be feasible if it violates none of four constraints described in Section III.

In each generation (\(g \)), a series of games are carried out on every population (Lines 4 to 28). A single game randomly chooses a pair of strategies \((s_1, s_2) \) and distinguishes them to the winner and the loser with respect to performance objectives described in Section III (Lines 7 to 9). The winner is replicated to increase its population share and mutated with polynomial mutation (Lines 10 to 18) \([3]\). Mutation randomly chooses a parameter (or parameters) in a given strategy with a certain mutation rate \(P_m \) and alters its/their value(s) at random (Lines 12 to 14). Then a game is performed between loser and the mutated winner (Line 16). Elitism concept is applied here to select the best two among strategies (winner, loser and mutated winner), and the worst strategy disappears in the population.

Once all strategies play games in the population, BitC identifies a feasible strategy whose population share \((x_s) \) is the highest and determines it as a dominant strategy \((d_i) \) (Lines 20 to 24). After a dominant strategy is determined, BitC performs local search to improve the dominant strategy (Line 26). In the end, BitC configures a BSN with the parameters contained in the dominant strategy (Line 27).

A game is carried out based on the superior-inferior relationship between given two strategies and their feasibility (c.f. performGame() in Algorithm 1). If a feasible strategy and an infeasible strategy participate in a game, the feasible one always wins over its opponent. If both strategies are feasible, they are compared with one of the following five schemes to select the winner.

- **Pareto dominance (PD):** This scheme is based on the notion of *dominance* \([6]\), in which a strategy \(s_1 \) is said to dominate another strategy \(s_2 \) if both of the following conditions hold:
 - \(s_1 \)'s objective values are superior than, or equal to, \(s_2 \)'s in all objectives.
 - \(s_1 \)'s objective values are superior than \(s_2 \)'s in at least one objectives.

 The dominating strategy wins a game over the dominated one. If two strategies are non-dominated with each other, the winner is randomly selected.

- **Hypervolume (HV):** This scheme is based on the hypervolume (HV) metric \([7]\). It measures the volume that a given strategy \(s \) dominates in the objective space:

\[
HV(s) = \Lambda \left(\bigcup \{ x' | x' \succ x_T \} \right) \tag{10}
\]

\(\Lambda \) denotes the Lebesgue measure. \(x_T \) is the reference point placed in the objective space. A higher hypervolume means that a strategy is more optimal. Given two strategies, the one with a higher hypervolume value wins a game. If both have the same hypervolume value, the winner is randomly selected.

- **Hybrid of Pareto dominance and hypervolume (PD-HV):** This scheme is a combination of the above two schemes. First, it performs the Pareto dominance (PD) comparison for given two strategies. If they are non-dominated with each other, the hypervolume (HV) comparison is used to select the winner. If they still tie with the hypervolume metric, the winner is randomly selected.

- **Maxmin (MM):** This scheme is based on the maxmin (MM) metric \([8]\). It measures how distant (i.e., better) a given strategy \(s \) is from the other strategies in a population \((s' \in P_i) \).

\[
MM(s) = \max_{s' \in P_i \setminus \{s\}} \left\{ \min_k \left(s_k, s'_k \right) \right\} \tag{11}
\]

\(s_k \) denotes the \(k \)-th objective value of the strategy \(s \). Given two strategies, the one with a higher maxmin value wins a game. If both have the same maxmin value, the winner is randomly selected.
Hybrid of Pareto dominance and maxmin (PD-MM): This scheme is a combination of the PD and MM schemes. First, it performs the Pareto dominance (PD) comparison for given two strategies. If they are non-dominated with each other, the MM comparison is used to select the winner. If they still tie with the maxmin metric, the winner is randomly selected.

If both strategies are infeasible in a game, they are compared based on their constraint violation. An infeasible strategy \(s_1 \) wins a game over another infeasible strategy \(s_2 \) if both of the following conditions hold:

- \(s_1 \)’s constraint violation is lower than, or equal to, \(s_2 \)’s in all constraints.
- \(s_1 \)’s constraint violation is lower than \(s_2 \)’s in at least one constraint.

Algorithm 1 Evolutionary Process in BitC

1: \(g \leftarrow 0 \)
2: Randomly generate the initial \(N \) populations for \(N \) BNs: \(P = \{P_1, P_2, \ldots, P_N\} \)
3: while \(g < G_{max} \) do
4: for each population \(P_i \) randomly selected from \(P \) do
5: \(P_i' \leftarrow \emptyset \)
6: for \(j = 1 \) to \(|P_i|/2 \) do
7: \(s_1 \leftarrow \text{randomlySelect}(P_i) \)
8: \(s_2 \leftarrow \text{randomlySelect}(P_i) \)
9: \(\{\text{winner}, \text{loser}\} \leftarrow \text{performGame}(s_1, s_2) \)
10: \(\text{replica} \leftarrow \text{replicate(\text{winner})} \)
11: for each parameter \(v \) in replica do
12: if random() \(\leq P_{m} \) then
13: \(\text{replica} \leftarrow \text{mutate(\text{replica}, v)} \)
14: end if
15: end for
16: \(\text{winner}' \leftarrow \text{performGame(\text{loser}, \text{replica})} \)
17: \(P_i' \cup \{\text{winner}, \text{winner}'\} \)
18: end for
19: \(P_i \leftarrow P_i' \)
20: \(d_i \leftarrow \text{argmax}_{s \in P_i} x_s \)
21: while \(d_i \) is infeasible do
22: \(P \setminus \{d_i\} \)
23: \(d_i \leftarrow \text{argmax}_{s \in P} x_s \)
24: end while
25: \(d_i \leftarrow \text{localSearch}(d_i) \)
26: Configure a BSN in question based on \(d_i \).
27: \(g \leftarrow g+1 \)
28: end while
29: return best

Algorithm 2 Tabu Local Search (localSearch())

Input: \(d_i \): Dominant strategy to improve
Output: Improved dominant strategy
1: \(T \leftarrow \emptyset \)
2: for each parameter \(v \in d_i \) and \(v \notin T \) do
3: if random() \(\leq P_{m} \) then
4: \(\text{replica} \leftarrow \text{mutate}(d_i, v) \)
5: \(T \leftarrow T \cup \{v\} \)
6: end if
7: end for
8: for \(i = 1 \) to \(Q - 1 \) do
9: for each parameter \(v \in d_i \) and \(v \notin T \) do
10: if random() \(\leq P_{m} \) then
11: \(\text{replica}' \leftarrow \text{mutate}(d_i, v) \)
12: \(T \leftarrow T \cup \{v\} \)
13: end if
14: end for
15: \(\text{replica} \leftarrow \text{performGame}(\text{replica, replica}') \)
16: end for
17: \(\text{best} \leftarrow \text{performGame}(\text{replica, } d_i) \)
18: return best

Algorithm 3 Greedy Local Search (localSearch())

Input: \(d_i \): Dominant strategy to improve
Output: Improved dominant strategy
1: for \(i = 1 \) to \(Q \) do
2: for each parameter \(v \) in replica do
3: if random() \(\leq P_{m} \) then
4: \(\text{replica} \leftarrow \text{mutate}(d_i, v) \)
5: end if
6: end for
7: \(\text{best} \leftarrow \text{performGame}(\text{replica}, d_i) \)
8: end for
9: return \(d_i \)

Algorithm 4 shows the third local search mechanism, Greedy Tabu Local Search (GTLS). It customizes GLS with a tabu list \(T \). It avoids taboo parameters in \(T \) when it performs mutation.

VI. STABILITY ANALYSIS

This section analyzes BitC’s stability (i.e., reachability to at least one of Nash equilibrium) by proving the state of each population converges to an evolutionarily stable equilibrium. The proof consists of three steps: (1) designing a set of differential equations that describe the dynamics of the population state, (2) proving an strategy selection process has equilibria, and (3) proving the the equilibria are asymptotically (or evolutionarily) stable. The proof uses the following symbols:

- \(S \) denotes the set of available strategies. \(S^* \) denotes a set of strategies that appear in the population.
- \(X(t) = \{x_1(t), x_2(t), \ldots, x_{|S|}(t)\} \) denotes a population state at time \(t \) where \(x_s(t) \) is the population share a strategy \(s \in S \).
- \(F_s \) denotes the fitness of a strategy \(s \). It is a relative value that is determined in a game against an opponent based on the dominance relationship between them. The winner of a game earns a higher fitness than the loser.
- \(p_{i,s}^t \) denotes the probability that a strategy \(s \) is replicated by winning a game against another strategy \(k \). \(\phi(F_s - F_k) \) is the probability that the fitness of \(s \) is higher than that of \(k \).

The dynamics of the population share of \(s \) is described as:
Algorithm 4 Greedy Tabu Local Search (localSearch())

Input: d_i: Dominant strategy to improve
Output: Improved dominant strategy

1: $T ← ∅$
2: for $i = 1$ to Q do
3: for each parameter $v ∈ d_i$ and $v ∉ T$ do
4: if random() $≤ P_m$ then
5: $replica ←$ mutate(d_i, v)
6: $T ← T ∪ \{v\}$
7: end if
8: end for
9: $d_i ← performGame(replica, d_i)$
10: end for
11: return d_i

$$\dot{x}_s = \sum_{k \in S^*, k \neq s} \{x_sp_k - x_kp_s\}$$

$$= x_s\sum_{k \in S^*, k \neq s} x_k\{\phi(F_s - F_k) - \phi(F_k - F_s)\}$$

Note that if s is strictly dominated, $x_s(t)_{t→∞} → 0$.

Theorem 2. The state of a population converges to an equilibrium.

Proof. It is true that different strategies have different fitness values. In other words, only one strategy has the highest fitness among others. Given Theorem 1, assuming that $F_1 > F_2 > \cdots > F_{|S^*|}$, the population state converges to an equilibrium: $X(t)_{t→∞} = \{x_1(t), x_2(t), \cdots, x_{|S^*|}(t)\}_{t→∞} = \{1, 0, \cdots, 0\}$

Theorem 3. The equilibrium found in Theorem 2 is asymptotically stable.

Proof. At the equilibrium $X = \{1, 0, \cdots, 0\}$, a set of differential equations can be downsized by substituting $x_1 = 1 - x_2 - \cdots - x_{|S^*|}$

$$\dot{z}_s = z_s[c_{s1}(1 - z_s) + \sum_{i=2,i\neq s}^{(|S^*|)} z_i \cdot c_{si}]$$

where $c_{sk} = \phi(F_s - F_k) - \phi(F_k - F_s)$ and $Z(t) = \{z_2(t), z_3(t), \cdots, z_{|S^*|}(t)\}$ denotes the corresponding downsized population state. Given Theorem 1, $Z_{t→∞} = Z_{eq} = \{0, 0, \cdots, 0\}$ of $(|S^*| - 1)$-dimension.

If all Eigenvalues of Jacobian matrix of $Z(t)$ has negative real parts, Z_{eq} is asymptotically stable. The Jacobian matrix J’s elements are described as follows where $s, k = 2, \cdots, |S^*|$

$$J_{sk} = \left[\frac{\partial x_s}{\partial z_k}\right]_{Z=Z_{eq}}$$

$$= \left[\frac{\partial z_s}{\partial z_k}\right]_{Z=Z_{eq}}[c_{s1}(1 - z_s) + \sum_{i=2,i\neq s}^{(|S^*|)} z_i \cdot c_{si}]$$

Therefore, J is given as follows, where $c_{21}, c_{31}, \cdots, c_{|S^*|1}$ are J’s Eigenvalues.

$$J = \begin{bmatrix}
 c_{21} & 0 & \cdots & 0 \\
 0 & c_{31} & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & c_{|S^*|1}
\end{bmatrix}$$

$c_{s1} = -\phi(F_1 - F_s) < 0$ for all s; therefore, $Z_{eq} = \{0, 0, \cdots, 0\}$ is asymptotically stable.

VII. SIMULATION EVALUATION

This section evaluates BitC through simulations and discusses how BitC allows BSNs to adapt their configurations to given operational conditions (e.g., data request patterns placed by cloud applications and memory space availability in sink and sensor nodes). Simulations are configured with the parameters shown in Table I.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of a simulation (W)</td>
<td>10,800 secs (3 hrs)</td>
</tr>
<tr>
<td>Number of simulation runs</td>
<td>10</td>
</tr>
<tr>
<td>Number of BSNs (N)</td>
<td>20 and 100</td>
</tr>
<tr>
<td>Number of sensor nodes in a BSN (M)</td>
<td>4</td>
</tr>
<tr>
<td>Memory space in a sensor node</td>
<td>2 GB</td>
</tr>
<tr>
<td>Memory space in a sink node</td>
<td>16 GB</td>
</tr>
<tr>
<td>Total number of data requests from cloud apps</td>
<td>1,000</td>
</tr>
<tr>
<td>Size of a data request (d_e and d_r)</td>
<td>100 bytes</td>
</tr>
<tr>
<td>Size of an error message (e_r)</td>
<td>250 bytes</td>
</tr>
<tr>
<td>Energy consumption for a single bit of data (e_{ei})</td>
<td>0.001 Watt</td>
</tr>
<tr>
<td>Blood pressure request time window</td>
<td>[0, 1000 secs]</td>
</tr>
<tr>
<td>Accelerometer request time window</td>
<td>[0, 1800 secs]</td>
</tr>
<tr>
<td>ECG request time window</td>
<td>[0, 600 secs]</td>
</tr>
<tr>
<td>Number of generations (G_{max})</td>
<td>300</td>
</tr>
<tr>
<td>Number of local search iterations (Q)</td>
<td>20</td>
</tr>
<tr>
<td>Population size (P_{max})</td>
<td>100</td>
</tr>
<tr>
<td>Mutation rate (P_m)</td>
<td>$1/V$</td>
</tr>
</tbody>
</table>

This paper assumes a nursing home where senior residents/patients live. A small-scale and a larger-scale simulations are carried out with 20 and 100 residents, respectively. The small-scale setting is used unless otherwise noted. Each resident is simulated to wear four sensors: a blood pressure sensor, an ECG sensor and two accelerometers (Fig. 1).

Cloud applications issue 1,000 data requests during three hours. Data requests are uniformly distributed over virtual sensors. A time window is randomly set for each request to a sensor. For example, it is set with the uniform distribution in between 0 and 600 seconds for an ECG sensor (Table I). Mutation rate is set to $1/V$ where V is the number of parameters in a strategy. Every simulation result is the average with 10 independent simulation runs.

<table>
<thead>
<tr>
<th>Category</th>
<th>Energy source</th>
<th>Harvested energy in 3 hrs</th>
<th>Total harvested energy in 3 hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very healthy</td>
<td>Piezo (2.0 Hz)</td>
<td>18.27 W</td>
<td>18.37 W</td>
</tr>
<tr>
<td>Healthy</td>
<td>Piezo (1.38 Hz)</td>
<td>12.56 W</td>
<td>12.63 W</td>
</tr>
<tr>
<td>Rehabilitation</td>
<td>Piezo (0.25 Hz)</td>
<td>2.28 W</td>
<td>2.29 W</td>
</tr>
<tr>
<td>Wheelchair</td>
<td>Piezo (0.03 Hz)</td>
<td>0.0 W</td>
<td>0.0 W</td>
</tr>
</tbody>
</table>

This paper assumes four types of residents (Table II). 25% of residents are simulated to be in each category. Each resident wears two energy harvesters: piezoelectric energy generator (PEG) and thermoelectric generators (TEG). A PEG and a TEG are assumed to be embedded in a shoe and attached
to the skin, respectively (Fig. 1). A PEG generates energy (piezoelectricity) from walking activities of a resident [9]. A TEG generates energy (thermoelectricity) from a resident’s body temperature [10].

The amount of harvested energy is computed based on a set of daily activities assumed for each type of residents. For example, a very healthy resident is assumed to have a scheduled walk and an exercise session with, for example, a treadmill under the average walking step frequency of 2 hertz. A PEG and a TEG is assumed to generate 11 mW per step and 0.06 mW per second [9], [10].

This paper simulates eight different combinations of constraints (Table III): no constraints (C_∞), very lightweight (C_{V_L}), lightweight (C_L), moderate (C_M), stringent (C_S), very stringent for energy consumption (C_{V_S}) and very stringent for data yield (C_{DY}). C_∞ is used unless otherwise noted.

Comparative performance study is carried out for BitC’s five variants (i.e., PD, HV, PD-HV, MM and PD-MM in Section V). BitC-PD is used unless otherwise noted. BitC is also compared with NSGA-II, which is a well-known multiobjective evolutionary algorithm [3]. BitC and NSGA-II use the same parameter settings shown in Table I. All other NSGA-II settings are borrowed from [3]. Both BitC and NSGA-II are implemented with jMetal [11].

Table IV examines how a mutation-related parameter, called distribution index (η_m in [3]), impacts the performance of BitC. This parameter controls how likely a mutated strategy is similar to its original. (A higher distribution index makes a mutant more similar to its original.) In Table IV, the performance of BitC is evaluated with the hypervolume measure that a set of dominant strategies yield in the 300th generation. The hypervolume metric indicates the union of the volumes that a given set of solutions dominates in the objective space [7]. A higher hypervolume means that a set of solutions is more optimal. As shown in Table IV, BitC yields the best performance with the distribution index value of 60. (Local search is not used to obtain this result.) Thus, this parameter setting is used in all successive simulations.

<table>
<thead>
<tr>
<th>Constraint Combination</th>
<th>C_E (W)</th>
<th>C_Y</th>
<th>C_R (%)</th>
<th>C_B (Kbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_∞</td>
<td>∞</td>
<td>0</td>
<td>0</td>
<td>∞</td>
</tr>
<tr>
<td>C_{V_L}</td>
<td>450</td>
<td>16</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>C_L</td>
<td>350</td>
<td>17</td>
<td>93</td>
<td>25</td>
</tr>
<tr>
<td>C_M</td>
<td>200</td>
<td>18</td>
<td>95</td>
<td>20</td>
</tr>
<tr>
<td>C_S</td>
<td>150</td>
<td>19</td>
<td>97</td>
<td>10</td>
</tr>
<tr>
<td>C_{V_S}</td>
<td>100</td>
<td>20</td>
<td>99</td>
<td>7</td>
</tr>
<tr>
<td>C_{EN}</td>
<td>50</td>
<td>16</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>C_{DY}</td>
<td>450</td>
<td>25</td>
<td>90</td>
<td>30</td>
</tr>
</tbody>
</table>

Table V illustrates the hypervolume that each BitC variant yields at the last generation. As shown in this table, BitC-HV yields the highest hypervolume value among five variants. Therefore, the variant is used in all successive simulations.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Hypervolume (HV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BitC PD</td>
<td>0.9247</td>
</tr>
<tr>
<td>BitC HV</td>
<td>0.9394</td>
</tr>
<tr>
<td>BitC PD-HV</td>
<td>0.9056</td>
</tr>
<tr>
<td>BitC MM</td>
<td>0.9071</td>
</tr>
<tr>
<td>BitC PD-MM</td>
<td>0.9143</td>
</tr>
</tbody>
</table>

BitC yields a single set of objective values with dominant strategies at each generation while NSGA-II yields 100 sets of objective values with 100 individuals at each generation. Therefore, in Table VI, the BitC solution is evaluated against an NSGA-II individual that is closest to the solution in the objective space. Table VI compares BitC-HV and NSGA-II based on three metrics: objective values, hypervolume and Euclidean distance. For NSGA-II, objective values are measured with an individual that minimizes the Euclidean distance to the BitC solution at the last generation. Hypervolume is measured with the NSGA-II individual. Distance is measured in between the NSGA-II individual and the BitC solution. Distance is computed with each objective normalized to [0, 1]. (The value range of distance is [0, 2].)

As shown in Table VI, BitC-HV is non-dominated with NSGA-II with respect to four objectives. BitC-HV outperforms NSGA-II and it gets very close to the performance bounds in three objectives (request fulfillment, bandwidth.
consumption and energy consumption) while NSGA-II outperforms BitC-HV in data yield. BitC-HV yields a slightly higher (2% higher) hypervolume value than NSGA-II. Table VI demonstrates that BitC-HV slightly outperforms NSGA-II on an a solution-to-solution basis. The performance bounds are given by running NSGA-II with single objective. Euclidean and Manhattan distances are used as metrics. In both metrics, a shorter distance means a given solution is closer to the performance bounds. BitC is closer to the bounds than NSGA-II by 29% and 34% in Euclidean and Manhattan distances, respectively.

Table VII shows the variance of objective values that BitC-HV and NSGA-II yield at the last generation in 10 different simulation runs. A lower variance means higher stability (or higher similarity) in objective value results (i.e., lower oscillations in objective value results) among different simulation runs. BitC-HV maintains significantly higher stability than NSGA-II in all objectives except energy consumption. On average, BitC’s stability is 36.75% higher than NSGA-II’s. This result exhibits BitC’s stability property (i.e. reachability to at least one equilibira), which NSGA-II does not have.

TABLE VI: Comparison of BitC-HV and NSGA-II

<table>
<thead>
<tr>
<th>Objective</th>
<th>NSGA-II</th>
<th>BitC-HV</th>
<th>Bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request Fulfillment: f_R (%)</td>
<td>97.6</td>
<td>98.35</td>
<td>99.00</td>
</tr>
<tr>
<td>Bandwidth: f_B (Kbps)</td>
<td>10.45</td>
<td>7.34</td>
<td>7.32</td>
</tr>
<tr>
<td>Energy consumption: f_E (Watts)</td>
<td>178.89</td>
<td>129.26</td>
<td>126.91</td>
</tr>
<tr>
<td>Data Yield: f_Y</td>
<td>37.92</td>
<td>14.54</td>
<td>44.72</td>
</tr>
<tr>
<td>Hypervolume</td>
<td>0.922</td>
<td>0.9394</td>
<td>-</td>
</tr>
<tr>
<td>Euclidean distance</td>
<td>0.152</td>
<td>0.108</td>
<td>-</td>
</tr>
<tr>
<td>Manhattan distance</td>
<td>0.232</td>
<td>0.153</td>
<td>-</td>
</tr>
</tbody>
</table>

Table VIII evaluates how different constraint combinations (C_{VL}, C_L, C_M and C_S). Under C_{EN} and C_{DY}, BitC fails to satisfy a constraint in each case although it satisfies three other constraints. And BitC fails to satisfy all the objectives subject to C_{VS} constraints, since the constraints setting is very stringent. The best performance is produced under C_S. In most of the cases BitC fails to satisfy the data yield constraint due to it is a conflicting objective with other three, and BitC tries to balance the trade-off among all the four objectives. Comparing the results of C_S and $C_{∞}$, and the results of C_S and C_{VS}, Table VIII demonstrates that BitC satisfies the data yield constraint by trading three other objectives for a global better performance. Given this result, C_S is used in all successive simulations.

Fig. 4 shows two three-dimensional objective spaces that plot a set of dominant strategies obtained from individual populations at each generation. Each blue dot indicates the average objective values that dominant strategies yield at a particular generation in 10 simulation runs. The trajectory of blue dots illustrates a path through which strategies evolve and improve objective values. Gray and red dots represent 10 different sets of objective values at the first and last generation in 10 simulation runs, respectively. While initial (gray) dots disperse (because the initial strategies are generated at random), final (red) dots are overlapped in a particular region. Consistent with Table VII, Fig. 4 verifies BitC’s stability: reachability to at least one equilibria regardless of the initial conditions.

Table VIII evaluates how different constraint combinations impact on the performance of BitC in objective values. The table shows the average, maximum and minimum objective values at the last generation subject to eight constraint combinations listed in Table III. BitC successfully satisfies four constraint combinations (C_{VL}, C_L, C_M and C_S). Under C_{EN} and C_{DY}, BitC fails to satisfy a constraint in each case although it satisfies three other constraints. And BitC fails to satisfy all the objectives subject to C_{VS} constraints, since the constraints setting is very stringent. The best performance is produced under C_S. In most of the cases BitC fails to satisfy the data yield constraint due to it is a conflicting objective with other three, and BitC tries to balance the trade-off among all the four objectives. Comparing the results of C_S and $C_{∞}$, and the results of C_S and C_{VS}, Table VIII demonstrates that BitC satisfies the data yield constraint by trading three other objectives for a global better performance. Given this result, C_S is used in all successive simulations.

Fig. 5 shows how BitC improves its performance through generations with 20 BSNs (i.e., 20 patients) and 100 BSNs. It shows the changes of objective values over generations. All four constraints are satisfied at the last generation. The two figures illustrate that BitC improves its objective values subject to given constraints by balancing the trade-offs among conflicting objectives. For example, BitC improves both request fulfillment and bandwidth consumption through generations while the two objectives conflict with each other.

Results are qualitatively similar comparing both results with 20 BSNs and 100 BSNs, although BitC yields a slightly lower performance with a larger number of BSNs. It is harder to satisfy given constraints in a larger-scale setting. (All four constraints are satisfied at the last generation.) BitC 100 BSNs’s performance decreases a little respect to 20 BSNs in
TABLE VIII: Objective Values of BitC-HV under Different Constraint Combinations

<table>
<thead>
<tr>
<th>Constraint Combination</th>
<th>f_B (Kbps)</th>
<th>f_E (W)</th>
<th>f_R (%)</th>
<th>f_Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{∞}$ maximum</td>
<td>11.38</td>
<td>195.81</td>
<td>97.7</td>
<td>30.25</td>
</tr>
<tr>
<td></td>
<td>average</td>
<td>11.17</td>
<td>193.25</td>
<td>97.57</td>
</tr>
<tr>
<td></td>
<td>minimum</td>
<td>10.88</td>
<td>186.96</td>
<td>97.4</td>
</tr>
<tr>
<td>C_{VL} maximum</td>
<td>12.11</td>
<td>208.96</td>
<td>97.3</td>
<td>17.64</td>
</tr>
<tr>
<td></td>
<td>average</td>
<td>11.8</td>
<td>203.77</td>
<td>97.27</td>
</tr>
<tr>
<td></td>
<td>minimum</td>
<td>11.53</td>
<td>198.94</td>
<td>96.9</td>
</tr>
<tr>
<td>C_{L} maximum</td>
<td>12.45</td>
<td>214.72</td>
<td>97.1</td>
<td>14.48</td>
</tr>
<tr>
<td></td>
<td>average</td>
<td>12.11</td>
<td>209.72</td>
<td>97.04</td>
</tr>
<tr>
<td></td>
<td>minimum</td>
<td>11.87</td>
<td>205.84</td>
<td>97</td>
</tr>
<tr>
<td>C_{M} maximum</td>
<td>9.13</td>
<td>159.93</td>
<td>97.85</td>
<td>17.53</td>
</tr>
<tr>
<td></td>
<td>average</td>
<td>9.04</td>
<td>157.98</td>
<td>97.81</td>
</tr>
<tr>
<td></td>
<td>minimum</td>
<td>8.90</td>
<td>155.14</td>
<td>97.7</td>
</tr>
<tr>
<td>C_{S} maximum</td>
<td>7.69</td>
<td>133.37</td>
<td>98.4</td>
<td>14.86</td>
</tr>
<tr>
<td></td>
<td>average</td>
<td>7.41</td>
<td>129.26</td>
<td>98.35</td>
</tr>
<tr>
<td></td>
<td>minimum</td>
<td>7.25</td>
<td>126.68</td>
<td>98.3</td>
</tr>
<tr>
<td>C_{VS} maximum</td>
<td>9.34</td>
<td>161.09</td>
<td>97.9</td>
<td>15.45</td>
</tr>
<tr>
<td></td>
<td>average</td>
<td>9.24</td>
<td>159.48</td>
<td>97.88</td>
</tr>
<tr>
<td></td>
<td>minimum</td>
<td>9.05</td>
<td>156.81</td>
<td>97.85</td>
</tr>
<tr>
<td>C_{EN} maximum</td>
<td>12.08</td>
<td>208.63</td>
<td>96.95</td>
<td>15.50</td>
</tr>
<tr>
<td></td>
<td>average</td>
<td>11.81</td>
<td>204.66</td>
<td>96.94</td>
</tr>
<tr>
<td></td>
<td>minimum</td>
<td>11.58</td>
<td>201.50</td>
<td>96.9</td>
</tr>
<tr>
<td>C_{DY} maximum</td>
<td>11.89</td>
<td>206.14</td>
<td>97.45</td>
<td>15.41</td>
</tr>
<tr>
<td></td>
<td>average</td>
<td>11.32</td>
<td>195.72</td>
<td>97.32</td>
</tr>
<tr>
<td></td>
<td>minimum</td>
<td>10.93</td>
<td>188.75</td>
<td>97.2</td>
</tr>
</tbody>
</table>

This paper extends a prior work of the authors [12]. A similar BSN configuration problem is considered in [12]; however, this paper extends the problem by incorporating energy harvesters and investigates how to leverage harvested energy to improve and balance the performance of BSNs by adjusting their configuration parameters. This paper also makes algorithmic extensions; it examines three local search operators as well as five different schemes to carry out games. All of these are not studied in [12]. Moreover, this paper...
TABLE X: Notation table

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[B]</td>
<td>set of BSNs</td>
<td>[P_m]</td>
<td>mutation rate</td>
</tr>
<tr>
<td>[N]</td>
<td>number of BSNs</td>
<td>[Q]</td>
<td>data yield objective</td>
</tr>
<tr>
<td>[M]</td>
<td>number of sensors</td>
<td>[G]</td>
<td>number of generations</td>
</tr>
<tr>
<td>[m_s]</td>
<td>sink node</td>
<td>[R]</td>
<td>data requests</td>
</tr>
<tr>
<td>[O]</td>
<td>data transmission interval</td>
<td>[R]</td>
<td>request fulfillment constraint</td>
</tr>
<tr>
<td>[p]</td>
<td>sensing interval</td>
<td>[C_R]</td>
<td>request fulfillment objective</td>
</tr>
<tr>
<td>[q]</td>
<td>sampling rate</td>
<td>[C_B]</td>
<td>bandwidth constraint</td>
</tr>
<tr>
<td>[R]</td>
<td>data requests</td>
<td>[K]</td>
<td>set of strategies</td>
</tr>
<tr>
<td>[G]</td>
<td>number of generations</td>
<td>[C_y]</td>
<td>data yield constraint</td>
</tr>
<tr>
<td>[P]</td>
<td>population size of the entire group of sensor and sink nodes with respect to multiple conflicting objectives including energy consumption.</td>
<td>[C_B]</td>
<td>request fulfillment constraint</td>
</tr>
</tbody>
</table>

is similar to BitC in that both consider three-tier architecture for cloud-integrated BSNs and carries out a single algorithm for the entire group of sensor and sink nodes with respect to multiple conflicting objectives including energy consumption. This paper formulates a sensor network configuration problem with integrated sensor networks. Unlike those relevant work, this paper formulates a sensor network configuration problem with cloud-integrated BSNs and caries out a single algorithm for the entire group of sensor and sink nodes with respect to multiple conflicting objectives including energy consumption. SC-iPaaS uses an evolutionary game theoretic algorithm that retains stability (i.e. reachability to at least one Nash equilibrium), whereas genetic algorithms lack stability.

IX. Conclusion

This paper considers a layered push-pull hybrid communication for cloud-integrated BSNs and formulates a BSN configuration problem to seek adaptive and stable solutions. An evolutionary game theoretic algorithm is used to approach the problem. A theoretical analysis proves that the proposed algorithm allows each BSN to operate at an equilibrium by using an evolutionarily stable configuration strategy in a deterministic (i.e., stable) manner. Simulation results verify this theoretical analysis; BSNs seek equilibria to perform adaptive and evolutionarily stable configuration strategies.

REFERENCES

